Q 1 :    

A satellite is orbiting just above the surface of the earth with period T. If d is the density of the earth and G is the universal constant of gravitation, the quantity 3πGd represents:                    [2023]

  • T3

     

  • T

     

  • T

     

  • T2

     

(4)

Let the planet is moving above the earth surface at R distance.

T=2πRv                                 ...(i)

As, the centripetal force of satellite is due to gravitational force of earth.

GMmR2=mv2RGMR=v2  or  v=GMR

Using (i), T=2πRRGM

T2=4π2R3G(d×43πR3)=3πGd.  Hence,  3πGd=T2



Q 2 :    

The time period of a geostationary satellite is 24 h, at a height 6RE (RE is radius of earth) from surface of earth. The time period of another satellite whose height is 2.5 RE from surface will be,            [2019]
 

  • 62 h

     

  • 122 h

     

  • 242.5 h

     

  • 122.5 h

     

(1)

Time period of Geostationary satellite is,

        T=2πa3GMT2a3

    T12T22=a13a23(24)2T22=(7RE)3(3.5RE)3

T22=(24)2×(3.5)3(7)3T2=(24)28=62 h.



Q 3 :    

A remote-sensing satellite of earth revolves in a circular orbit at a height of 0.25×106 m above the surface of earth. If earth’s radius is 6.38×106 m and g=9.8ms-2, then the orbital speed of the satellite is:                [2015]
 

  • 9.13 km s-1

     

  • 6.67 km s-1

     

  • 7.76 km s-1

     

  • 8.56 km s-1

     

(3)

The orbital speed of the satellite is, v0=Rg(R+h)

where R is the earth’s radius, g is the acceleration due to gravity on earth’s surface, and h is the height above the surface of Earth.

Here, R=6.38×106m,  g=9.8ms-2,  h=0.25×106m

   v0=(6.38×106m)(9.8ms-2)(6.38×106m+0.25×106m)

              =7.76×103ms-1=7.76km s-1



Q 4 :    

A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is very small compared to the mass of the earth. Then,          [2015]

  • the linear momentum of S remains constant in magnitude

     

  • the acceleration of S is always directed towards the centre of the earth

     

  • the angular momentum of S about the centre of the earth changes in direction, but its magnitude remains constant

     

  • the total mechanical energy of S varies periodically with time

     

(2)

The gravitational force on the satellite S acts towards the centre of the earth, so the acceleration of the satellite S is always directed towards the centre of the earth.