Q 1 :    

The escape velocity for Earth is v. A planet having 9 times mass of Earth and radius, 16 times that of Earth, has the escape velocity of          [2024]
 

  • v3

     

  • 2v3

     

  • 3v4

     

  • 9v4

     

(3)

The escape velocity of Earth,

v=2GMeRe=2G×9Me16Re                        (Mp=9MeRp=16Re)

=342GMeRe    vp=34v                    (using above eqn.)



Q 2 :    

The escape velocity of a body on the earth surface is 11.2 km/s. If the same body is projected upward with velocity 22.4 km/s, the velocity of this body at infinite distance from the centre of the earth will be:               [2023]
 

  • 11.22 km/s

     

  • Zero

     

  • 11.2 km/s

     

  • 11.23 km/s

     

(4)

The velocity at infinite distance when speed of projection and escape velocity are given, v2=v2-ve2

where v is projection velocity 

ve is escape velocity. Given, v=2ve

So,  v=(2ve)2-ve2 ;

        v=3ve=11.23 km/s



Q 3 :    

The escape velocity from the Earth's surface is v. The escape velocity from the surface of another planet having a radius, four times that of Earth and same mass density is      [2021]
 

  • 4v

     

  • v

     

  • 2v

     

  • 3v

     

(1)

The formula of escape velocity is

     v=2GMR

where, G = gravitational constant, M = mass and R = radius.

Mass, M=43πR3ρ where, ρ is the density of the planet

        v=2×GR×43πR3ρ

       v=8Gπ3R2ρ                                             ...(i)

Let the escape velocity on planet is v'.

For planet, R'=4R,ρ'=ρ

       v'=8Gπ3R'2ρ'                                        ...(ii)

Divide equation (i) by (ii), we get

So,  v'v=R'2R2×ρ'ρ

        v'v=16R2R2×ρρ=16=4

        v'=4v



Q 4 :    

A particle of mass 'm' is projected with a velocity v=kVe(k<1) from the surface of the earth. (Ve = escape velocity)
The maximum height above the surface reached by the particle is                 [2021]

  • Rk21-k2

     

  • R(k1-k)2

     

  • R(k1+k)2

     

  • R2k1+k

     

(1)

The particle is fired vertically upwards from the Earth’s surface with a velocity v and reaches a height h.

Energy of the particle at the surface of the Earth is

         Ei=12mv2-GMEmRE

Energy of the particle at a height h

         Ef=-GMEmRE+h  (∵at height h, velocity of the particle is zero)

According to law of conservation of energy,

      Ei=Ef

      12mv2-GMEmRE=-GMEmRE+h

       12mv2=GMEm[1RE-1RE+h]=GMEmh(RE)(RE+h)

       12mv2=mghRERE+h                   ...(i)                 ( g=GMERE2)

As per question,

       v=kve=k2gRE                  ...(ii)                  (ve=Ve=2gRE)

Using (i) and (ii), we get

        h=REk21-k2

If RE=R, then h=Rk21-k2



Q 5 :    

The ratio of escape velocity at earth (ve) to the escape velocity at a planet (vp) whose radius and mean density are twice as that of earth is        [2016]
 

  • 1:4

     

  • 1:2

     

  • 1:2

     

  • 1:22

     

(4)

As escape velocity, v=2GMR

   =2GR·4πR33ρ=R8πG3ρ

   vevp=ReRp×ρeρp=12×12=122           (Rp=2Re and ρp=2ρe)



Q 6 :    

A black hole is an object whose gravitational field is so strong that even light cannot escape from it. To what approximate radius would earth (mass =5.98×1024 kg) have to be compressed to be a black hole?              [2014]
 

  • 10-9 m

     

  • 10-6 m

     

  • 10-2 m

     

  • 100 m

     

(3)

Light cannot escape from a black hole,

ve=c2GMR=c  or  R=2GMc2

R=2×6.67×10-11Nm2kg-2×5.98×1024kg(3×108ms-1)2

      =8.86×10-3m≃10-2m