Q 1 :

Two satellite A and B go round a planet in circular orbits having radii 4R and R respectively. If the speed of A is 3v, the speed of B will be           [2024]

  • 6v

     

  • 12v

     

  • 43v

     

  • 3v

     

(1)

 



Q 2 :

A satellite revolving around a planet in stationary orbit has time period 6 hours. The mass of planet is one-fourth the mass of earth. The radius orbit of planet is

(Given = Radius of geo-stationary orbit for earth is 4.2×104 km)          [2024]

  • 1.05×104 km

     

  • 1.4×104 km

     

  • 1.68×105 km

     

  • 8.4×104 km

     

(1)   

        By Kepler's law, T2=4π2R3GMT2R3M

         (T1T2)2=(R1R2)3(M2M1)

         (246)2=(4.2×104R2)3×(ME4ME)

         42×4=(4.2×104R2)3R2=1.05×104 km

 



Q 3 :

Correct formula for height of a satellite from Earth's surface is _____.     [2024]

  • (T2R2g4π2)1/3-R

     

  • (T2R2g4π2)1/2-R

     

  • (T2R24π2g)1/3-R

     

  • (T2R2g4π2)-1/3+R

     

(1)

mv2(R+h)=GMm(R+h)2v=GMR+h

Now T=2π(R+h)GMR+h

T=2π(R+h)3/2GM=2π(R+h)3/2Rg

T2R2g=4π2(R+h3)

(T2R2g4π2)1/3-R=h



Q 4 :

A satellite of mass M2 is revolving around earth in a circular orbit at a height of R3 from earth surface. The angular momentum of the satellite is MGMRx. The value of x is ________, where M and R are the mass and radius of earth, respectively. (G is the gravitational constant)          [2025]



(3)

(i) If earth is assumed to be stationary

Orbital velocity v0=GM4R/3=3GM4R

Angular momentum of satellite

L=M2v04R3

L=M2·3GM4R·4R3=MGMR3

 x=3



Q 5 :

A satellite of mass 1000 kg is launched to revolve around the earth in an orbit at a height of 270 km from the earth's surface. Kinetic energy of the satellite in this orbit is ___ ×1010J. (Mass of earth =6×1024kg, Radius of earth =6.4×106m, Gravitational constant =6.67×1011Nm2kg2)          [2025]



(3)

K=U2=GMm2r

 K=6.67×1011×6×1024×1032×6670×103=3×1010J



Q 6 :

The time period of a satellite of earth is 24 hours. If the separation between the earth and the satellite is decreased to one fourth of the previous value, then its new time period will become           [2023]

  • 4 hours

     

  • 6 hours

     

  • 12 hours

     

  • 3 hours

     

(4)

T2R3

T12T22=R13R23(T1T2)2=(RR/4)3

 T12T22=64

T22=T1264

T2=248=3 hr



Q 7 :

Given below are two statements:                                   [2023]

Statement I: If E be the total energy of a satellite moving around the earth, then its potential energy will be E2.

Statement II: The kinetic energy of a satellite revolving in an orbit is equal to the half the magnitude of total energy E.

In the light of the above statements, choose the most appropriate answer from the options given below:

  • Both Statement I and Statement II are incorrect

     

  • Both Statement I and Statement II are correct

     

  • Statement I is incorrect but Statement II is correct

     

  • Statement I is correct but Statement II is incorrect

     

(1)

Energy of satellite in orbit  E=-GMm2R

PE of satellite in orbit  U=-GMmR

U=2E

KE of satellite in orbit  K=E-U

K=GMm2R=(-E)



Q 8 :

The orbital angular momentum of a satellite is L. When it is revolving in a circular orbit at height h from earth surface, If the distance of satellite from the earth centre is increased by eight times to its initial value, then the new angular momentum will be        [2023]

  • 8L

     

  • 9L

     

  • 4L

     

  • 3L

     

(4)

L=mvr

v=GMer

L=mGMer·rLr1/2

Now distance from centre is increased by 8 times.

So new distance from center =r+8r=9r

Now angular momentum L'(9r)1/2

LL'=r1/2(9r)1/2=13L'=3L



Q 9 :

Two satellites of masses m and 3m revolve around the earth in circular orbits of radii r and 3r respectively. The ratio of orbital speeds of the satellites respectively is     [2023]

  • 1 : 1

     

  • 3 : 1

     

  • 3 : 1

     

  • 9 : 1

     

(3)

v=GMr

v1r

v1v2=r2r1=3rr=3:1



Q 10 :

The time period of a satellite, revolving above earth’s surface at a height equal to R will be (Given g=π2m/s2, R = radius of earth)                   [2023]

  • 4R

     

  • 8R

     

  • 32R

     

  • 2R

     

(3)

mv22R=GMm(2R)2

v=GM2R=Rg2

T=2π(2R)v=4πR2Rg=32R