Q 1 :    

A 90 kg body placed at 2R distance from surface of earth experiences gravitational pull of (R = Radius of earth, g=10ms-2)              [2024]

  • 100 N

     

  • 300 N

     

  • 120 N

     

  • 225 N

     

(A)  Acceleration due to gravity at height h from earth's surface

       gh=GM(R+h)2

       gh=GM9R2=gs9( h=2R)

      Here gs= gravitational acceleration at surface

     Gravitational Pull mgs=90×gs9=100N



Q 2 :    

Assuming the earth to be a sphere of uniform mass density, a body weighed 300 N on the surface of earth. How much it would weigh at R/4 depth under surface of earth?                [2024]

  • 300 N

     

  • 75 N

     

  • 225 N

     

  • 375 N

     

(C)  At surface: mgs=300Nm=300gs

       Gravitational field at R4 depth under surface, gd=gs[1-dR]

       gd=gs[1-R4R]=3gs4

      Weight at depth, Wd=m×gd=m×3gs4=34×300=225N

 



Q 3 :    

The acceleration due to gravity on the surface of earth is g. If the diameter of earth reduces to half of its original value and mass remains constant, then acceleration due to gravity on the surface of earth would be       [2024]

  • g/4

     

  • 2g

     

  • g/2

     

  • 4g

     

(D)     g=GMR2g1R2

          g2=4g1(R2=R12)



Q 4 :    

If R is the radius of the earth and the acceleration due to gravity on the surface of earth is g=π2m/s2, then the length of the second's pendulum at a height h=2R from the surface of earth will be         [2024]

  • 29m

     

  • 19m

     

  • 49m

     

  • 89m

     

(B)     g=GMR2=π2

         g'=GM9R2=g9=π29

        We know, T=2πlg

       Since the time period of second pendulum is 2 sec.

       2=2πl×9π2

      On solving, l=19m

 



Q 5 :    

At what distance above and below the surface of the earth a body will have same weight? (take radius of earth as R).          [2024]

  • 5R-R

     

  • 3R-R2

     

  • R2

     

  • 5R-R2

     

(D)   Below the surface of the earth, Wdepth=GMm(R-h)R3

         Above the surface of the earth, Wabove=GMm(R+h)2

         If the body will have same weight, gp=gq

         GMm(R-h)R3=GMm(R+h)2

          R3=(R+h)2(R-h)h2+Rh-R2=0

          h=R2(5-1)

 



Q 6 :    

A simple pendulum is placed at a place where its distance from the earth's surface is equal to the radius of the earth. If the length of the string is 4m, then the time period of small oscillations will be ___________ s. [take g=π2 ms-2]                      [2024]



(8)      T=2πlgeff

          g=GMR2, at a height, h,g=GM(R+h)2

          geff=g(RR+h)2,geff=g(R2R)2

          geff=g4

          T=2πlgeff=2π4×4g=(2π)(4)g

          Given, g=π2

          T=8sec