Q 1 :    

Match List-I with List-II                                                              [2024]

  List - I   List - II
A Kinetic energy of planet (I) -GMm/a
B Gravitation Potential energy of sun planet system (II) GMm/2a
C Total mechanical energy of planet (III) GMm/r
D Escape energy at the surface of planet for unit mass object (IV) -GMm/2a

 

  • (A)-(I), (B)-(IV), (C)-(II), (D)-(III)

     

  • (A)-(II), (B)-(I), (C)-(IV), (D)-(III)

     

  • (A)-(III), (B)-(IV), (C)-(I), (D)-(II)

     

  • (A)-(I), (B)-(II), (C)-(III), (D)-(IV)

     

(B)   Potential energy = -GMma

        Total energy = -GMm2a

        kinetic energy = GMmr

       Escape energy = GMmr

 



Q 2 :    

To project a body of mass m from earth's surface to infinity, the required kinetic energy is (assume, the radius of earth is RE) g = acceleration due to gravity on the surface of earth:              [2024]

  • mgRE

     

  • 1/2mgRE

     

  • 4mgRE

     

  • 2mgRE

     

(A)   Escape speed ve=2GMRE

        Escape kinetic energy Ke=12mve2

        Ke=12m(2GMRE)2=GMmRE

         Also, GM=gRE2Ke=(gRE2)mRE=mgRE

 



Q 3 :    

An astronaut takes a ball of mass m from earth to space. He throws the ball into a circular orbit about earth at an altitude of 318.5 km. From earth's surface to the orbit, the change in total mechanical energy of the ball is xGMem21Re. The value of x is (take Re= 6370 km):                          [2024]

  • 11

     

  • 9

     

  • 12

     

  • 10

     

(A)   h=318.5(Re20)

        T·Ei=-GMemRe

        T·Ef=-GMem2(Re+h)=-GMem2(Re+Re20)

        Change in total mechanical energy = TEf-TEi

         =GMemRe[1-1021]=11GMem21Ren

 



Q 4 :    

The gravitational potential at a point above the surface of earth is -5.12×107 J/kg and the acceleration due to gravity at that point is 6.4 m/s2.     

Assume that the mean radius of earth to be 6400 km. The height of this point above the earth's surface is:                      [2024]

  • 1600 km

     

  • 540 km

     

  • 1200 km

     

  • 1000 km

     

(A)  Vg=-GM(R+h)=-5.12×107 J/kg

       g=GM(R+h)2=6.4m/s2

       Vgg=-(R+h)

       -5.12×1076.4=-(R+h)

         6400 km + h = 8000 km

         h = 1600 km

 



Q 5 :    

Escape velocity of a body from earth is 11.2 km/s. If the radius of a planet be one-third the radius of earth and mass be one-sixth that of earth, the escape velocity from the planet is                        [2024]

  • 11.2 km/s

     

  • 8.4 km/s

     

  • 4.2 km/s

     

  • 7.9 km/s

     

(D)   RP=RE3, MP=ME6

        Ve=2GMR for earth

         Ve'=2G(M/6)(R/3)=GMR for planet

        2Ve'=Ve

         Ve'=Ve2=11.22=(11.2)×0.7 km/sec

         Ve'=7.84 km/sec7.9km/sec

 



Q 6 :    

The mass of the moon is 1/144 times the mass of a planet and its diameter 1/16 times the diameter of a planet. If the escape velocity on the planet is V, the escape velocity on the moon will be                 [2024]

  • V/3

     

  • V/4

     

  • V/12

     

  • V/6

     

(A)   Vescape=2GMR

         Vplanet=2GMR=V

          VMoon=2GM×16144R=132GMR

         VMoon=VPlanet3=V3