Q 11 :

If sinθ=cosθ, (0°<θ<90°), then value of (secθ.sinθ) is:

  • 1/2

     

  • 2

     

  • 1

     

  • 0

     

(3)

sinθ=cosθtanθ=1=45°θ=45°

Now, secθ.sinθ=sec45°.sin45°=2×12=1



Q 12 :

If 5 tan θ-12=0, then the value of sin θ is

  • 512

     

  • 1213

     

  • 513

     

  • 125

     

(2)

Given,5tanθ-12=0tanθ=125=pbLet p=12k, b=5kh=p2+b2=(12k)2+(5k)2=144k2+25k2=169k2=13ksinθ=ph=12k13k=1213

 



Q 13 :

In ABC, right angled at B sinA=725, then the value of cos C is

  • 725

     

  • 2425

     

  • 724

     

  • 247

     

(1)

sinA=ph=BCAC=725cosC=bh=BCAC=725



Q 14 :

In the given figure, D is the mid-point of BC , then the value of cotycotx is

  • 2

     

  • 1/2

     

  • 1/3

     

  • 1/4

     

(2)

From the given figurecotycotx=ACBC÷ACCD=ACBC×CDAC=CDBC=CD2CD=12(Using cotθ=bp)

 



Q 15 :

If a tanθ=b the value of bsinθ-acosθbsinθ+acosθ is

  • b-ab2+a2

     

  • b+ab2+a2

     

  • b2+a2b2-a2

     

  • b2-a2b2+a2

     

(4)

We have, tanθ=baGiven expression is bsinθ-acosθbsinθ+acosθTaking cosθ common from the expression,it gives btanθ-abtanθ+a(i)Substituting tanθ=bainequation (i) givesb2a-ab2a+a=b2-a2b2+a2

 



Q 16 :

Which of the following trigonometric ratios are correctly written in context of ABC as given?

(i)sinA=BCAC(ii)tanC=BCAB(iii)cosC=ABAC(iv)secA=ACAB

  • (i) and (ii)

     

  • (ii) and (iv)
     

  • (i) and (iv)
     

  • (ii) and (iii)

     

(3)

WhenA is under considerationBase = AB, Perpendicular = BC, Hypotenuse = ACsinA=PerpendicularHypotenuse=BCACand secA=HypotenuseBase=ACABWhenC is underconsideration:Base = BC, Perpendicular = AB, Hypotenuse = ACtanC=PerpendicularBase=ABBCand cosC=BaseHypotenuse=BCAC

 



Q 17 :

If sinα=32,cosβ=32, then tanα·tanβ is:

  • 3

     

  • 13

     

  • 1

     

  • 0

     

(3)

Given 

sinα=32=sin60°α=60°And, cosβ=32=cos30°β=30°tanα·tanβ=tan60°·tan30°=3×13=1

 



Q 18 :

The value of θ for which 2sin 2θ=12,0°θ90° is

  • 30°

     

  • 60°

     

  • 45°

     

  • 90°

     

(2)

2sin 2θ=12sin 2θ=14sinθ=12=sin30°θ=30°

 



Q 19 :

58sec 260°-tan 260°+cos 245° is equal to

  • -53

     

  • -12

     

  • 0

     

  • 14

     

(3)

We have,

58sec 260°-tan 260°+cos 245°=58×(2)2-(3)2+122=58×4-3+12=52-3+12=5-6+12=0



Q 20 :

2tan30°1+tan 230° is equal to

  • sin60°

     

  • cos60°

     

  • tan60°

     

  • sin30°

     

(1)

We have, 

2tan30°1+tan 230°=2×131+132=231+13=2343=23×34=32=sin60°