Q 1 :    

A linear aperture whose width is 0.02 cm is placed immediately in front of a lens of focal length 60 cm. The aperture is illuminated normally by a parallel beam of wavelength 5×10-5cm. The distance of the first dark band of the diffraction pattern from the centre of the screen is            [2016]
 

  • 0.10 cm

     

  • 0.25 cm

     

  • 0.20 cm

     

  • 0.15 cm

     

(4)

Here, a=0.02 cm=2×10-4 m

λ=5×10-5cm=5×10-7m    D=60cm=0.6m

Position of first minima on the diffraction pattern,

y=Dλa=0.6×5×10-72×10-4=15×10-4 m=0.15 cm



Q 2 :    

In a diffraction pattern due to a single slit of width a, the first minimum is observed at an angle 30° when light of wavelength 5000 Å is incident on the slit. The first secondary maximum is observed at an angle of          [2016]
 

  • sin-1(12)

     

  • sin-1(34)

     

  • sin-1(14)

     

  • sin-1(23)

     

(2)

For first minimum, the path difference between extreme waves, asinθ=λ

Here θ=30°sinθ=12  a=2λ                    ...(i)

For first secondary maximum, the path difference between extreme waves

asinθ'=32λ  or  (2λ)sinθ'=32λ  [Using eqn (i)]

or  sinθ'=34   θ'=sin-1(34)



Q 3 :    

In a double slit experiment, the two slits are 1 mm apart and the screen is placed 1 m away. A monochromatic light of wavelength 500 nm is used. What will be the width of each slit for obtaining ten maxima of double slit within the central maxima of single slit pattern?         [2015]

  • 0.5 mm

     

  • 0.02 mm

     

  • 0.2 mm

     

  • 0.1 mm

     

(3)

For double slit experiment,

d=1 mm=1×10-3 m,  D=1 m,  λ=500×10-9 m

Fringe width β=Dλd

Width of central maxima in a single slit =2λDa

As per question, width of central maxima of single slit pattern = width of 10 maxima of double slit pattern

2λDa=10(λDd)  or  a=2d10=2×10-310=0.2×10-3m=0.2 mm



Q 4 :    

At the first minimum adjacent to the central maximum of a single-slit diffraction pattern, the phase difference between the Huygen's wavelet from the edge of the slit and the wavelet from the midpoint of the slit is          [2015]
 

  • π radian

     

  • π8 radian

     

  • π4 radian

     

  • π2 radian 

     

(1)

The situation is shown in the figure.

[IMAGE 288] ----------------------------------------------------------------

In figure A and B represent the edges of the slit AB of width a and C represents the midpoint of the slit.

For the first minimum at P,

       asinθ=λ                                                                    ...(i)

where λ is the wavelength of light.

The path difference between the wavelets from A to C is

        Δx=a2sinθ=12(asinθ)=λ2  (using (i))

The corresponding phase difference Δϕ is

        Δϕ=2πλΔx=2πλ×λ2=π



Q 5 :    

A beam of light of λ=600 nm from a distant source falls on a single slit 1 mm wide and the resulting diffraction pattern is observed on a screen 2 m away. The distance between first dark fringes on either side of the central bright fringe is            [2014]

  • 1.2 cm

     

  • 1.2 mm

     

  • 2.4 cm

     

  • 2.4 mm

     

(4)

Here, λ=600 nm=600×10-9 m

a=1 mm=10-3 m,  D=2 m

Distance between the first dark fringes on either side of the central bright fringe is also the width of central maximum.

Width of central maximum=2λDa

=2×600×10-9m×2m10-3m=24×10-4m=2.4×10-3m=2.4 mm