Q 1 :

Two waves of intensity ratio 1:9 cross each other at a point. The resultant intensities at that point, when

 

(a) Waves are in coherent is I1

 

(b) Waves are coherent is I2 and differ in phase by 60. If I1I2=10x then x= ___________ .              [2024]



(13)      For incoherent wave I1=IA+IBI1=I0+9I0

              I1=10I0

             For coherent wave I2=IA+IB+2IAIBcos600

             I2=I0+9I0+29I02·12=13I0

             I1I2=1013

 



Q 2 :

In the resonance experiment, two air columns (closed at one end) of 100 cm and 120 cm long, give 15 beats per second when each one is sounding in the respective fundamental modes. The velocity of sound in the air column is:          [2025]

  • 335 m/s

     

  • 370 m/s

     

  • 340 m/s

     

  • 360 m/s

     

(4)

Fundamental frequency in close organ pipe, f0=v4lf1=v4l1 and f2=v4l2

Beat f=(f1f2)=v4(1l11l2)

                  15=v4(1111.2)

 v=360 m/s



Q 3 :

Two harmonic waves moving in the same direction superimpose to form a wave x = a cos (1.5t) cos (50.5t) where t is in seconds. Find the period with which they beat (close to nearest integer)          [2025]

  • 6 s

     

  • 4 s

     

  • 1 s

     

  • 2 s

     

(4)

The given equation can be written as

x=a2cos[1.5+50.5]t+a2cos[50.51.5]t

x=a2cos[52t]+a2cos[49t]

Here, 2πf1=52 and 2πf2=49

f1=522π, f2=492π

 f=fBeat=f1f2=32πHz

  TBeat=1fBeat=2π3sec=2.09 sec

 TBeat2 sec



Q 4 :

The amplitude and phase of a wave that is formed by the superposition of two harmonic travelling waves, y1(x,t)=4 sin (kxωt) and y2(x,t)=2 sin (kxωt+2π3), are: (Take the angular frequency of initial waves same as ω)          [2025]

  • [6,2π3]

     

  • [6,π3]

     

  • [3,π6]

     

  • [23,π6]

     

(4)

A=A12+A22+2A1A2 cos ϕ

Here, ϕ=2π3

A=42+22+2×4×2 cos 2π3=23

tan α=2 sin ϕ4+2 cos ϕ=13 α=π/6



Q 5 :

Two simple harmonic waves having equal amplitudes of 8 cm and equal frequency of 10 Hz are moving along the same direction. The resultant amplitude is also 8 cm. The phase difference between the individual waves is ______ degree.                  [2023]



(120)

2Acos(Δϕ2)=A

cos(Δϕ2)=12Δϕ2=60°



Q 6 :

The displacement equations of two interfering waves are given by 

y1=10sin(ωt+π3) cm

y2=5[sin(ωt)+3cos(ωt)] cm respectively.

The amplitude of the resultant wave is ________ cm.                    [2023]



(20)

y2=5(sinωt+3cosωt)

=10sin(ωt+π3)

Thus the phase difference between the waves is 0

So A=A1+A2=20 cm



Q 7 :

The fundamental frequency of vibration of a string stretched between two rigid supports is 50 Hz. The mass of the string is 18 g and its linear mass density is 20 g/m. The speed of the transverse waves so produced in the string is ______ m s-1.                 [2023]



(90)

[IMAGE 121]

Fundamental frequency=50 Hz

masslength=20 g/m

mass=18 g

length of string=1820m=910m

From diagram λ2=

λ=2=95m

Again, speed v=fλ=50×95=90 m/s