Q 1 :    

Two waves of intensity ratio 1:9 cross each other at a point. The resultant intensities at that point, when

 

(a) Waves are in coherent is I1

 

(b) Waves are coherent is I2 and differ in phase by 60. If I1I2=10x then x= ___________ .              [2024]



(13)      For incoherent wave I1=IA+IBI1=I0+9I0

              I1=10I0

             For coherent wave I2=IA+IB+2IAIBcos600

             I2=I0+9I0+29I02·12=13I0

             I1I2=1013

 



Q 2 :    

In the resonance experiment, two air columns (closed at one end) of 100 cm and 120 cm long, give 15 beats per second when each one is sounding in the respective fundamental modes. The velocity of sound in the air column is:          [2025]

  • 335 m/s

     

  • 370 m/s

     

  • 340 m/s

     

  • 360 m/s

     

(4)

Fundamental frequency in close organ pipe, f0=v4lf1=v4l1 and f2=v4l2

Beat f=(f1f2)=v4(1l11l2)

                  15=v4(1111.2)

 v=360 m/s



Q 3 :    

Two harmonic waves moving in the same direction superimpose to form a wave x = a cos (1.5t) cos (50.5t) where t is in seconds. Find the period with which they beat (close to nearest integer)          [2025]

  • 6 s

     

  • 4 s

     

  • 1 s

     

  • 2 s

     

(4)

The given equation can be written as

x=a2cos[1.5+50.5]t+a2cos[50.51.5]t

x=a2cos[52t]+a2cos[49t]

Here, 2πf1=52 and 2πf2=49

f1=522π, f2=492π

 f=fBeat=f1f2=32πHz

  TBeat=1fBeat2π3sec=2.09 sec

 TBeat=2 sec



Q 4 :    

The amplitude and phase of a wave that is formed by the superposition of two harmonic travelling waves, y1(x,t)=4 sin (kxωt) and y2(x,t)=2 sin (kxωt+2π3), are: (Take the angular frequency of initial waves same as ω)          [2025]

  • [6,2π3]

     

  • [6,π3]

     

  • [3,π6]

     

  • [23,π6]

     

(4)

A=A12+A22+2A1A2 cos ϕ

Here, ϕ=2π3

A=42+22+2×4×2 cos 2π3=23

tan α=2 sin ϕ4+2 cos ϕ=13 α=π/6