Q 21 :    

Let the shortest distance from (a, 0), a > 0, to the parabola y2=4x be 4. Then the equation of the circle passing through the point (a, 0) and the focus of the parabola, and having its centre on the axis of the parabola is:          [2025]

  • x2+y24x+3=0

     

  • x2+y28x+7=0

     

  • x2+y210x+9=0

     

  • x2+y26x+5=0

     

(4)

Equation of normal at P(t2,2t) is given by

y+tx=2t+t3          ... (i)

Put x = a, y = 0 in equation (i), we get

at=2t+t3

 a=2+t2

   The point Q is (2+t2,0)

 PQ=4  4+4t2=16

 4t2=12  t2=3

  a=5 and Q(5,0)

   Focus of parabola is (1, 0) and centre of circle lie on axis of parabola.
 (1, 0) and (5, 0) will be the end points of diameter of the circle.

   Equation of circle is (x1)(x5)+y2=0

 x2+y26x+5=0.



Q 22 :    

If the equation of the parabola with vertex V(32,3) and the directrix x + 2y = 0 is αx2+βy2γxy30x60y+225=0, then α+β+γ is equal to :          [2025]

  • 9

     

  • 6

     

  • 8

     

  • 7

     

(1)

Given : Vertex of parabola (32,3) and directrix is x + 2y = 0

Since, axis is  to directrix and passes through vertex, then equation of axis

y3=2(x32)  y=2x3+3  y=2x

   Foot of directrix is intersecting point of

            y = 2x & 2y + x = 0 i.e., (0, 0)

   Focus  (3, 6)

Using definition of parabola,

PS2=PM2

 (x3)2+(y6)2=(x+2y5)2

 x2+96x+y2+3612y=x2+4y2+4xy5

 4x2+y24xy30x60y+225=0

On comparing we get α=4, β=1 and γ=4

Hence, α+β+γ = 4 + 1 + 4 = 9.



Q 23 :    

Let ABCD be a trapezium whose vertices lie on the parabola y2=4x. Let the sides AD and BC of the trapezium be parallel to y-axis. If the diagonal AC is of length 254 and it passes through the point (1, 0), then the area of ABCD is          [2025]

  • 252

     

  • 1258

     

  • 754

     

  • 758

     

(3)

Let A(at12,2at1) and C(at12,2at1) be the points lies on parabola y2=4x.

   Length of AC=a(t1+1t1)2=254 (Given)

 t1+1t1=±52

So, A(14,1), B(4, 4), C(4,4) and D(14,1)

   The area of trapezium ABCD = 12(8+2)(414)=754.



Q 24 :    

Two parabolas have the same focus (4, 3) and their directrices are the x-axis and the y-axis, respectively. If these parabolas intersects at the points A and B, then (AB)2 is equal to :          [2025]

  • 392

     

  • 96

     

  • 384

     

  • 192

     

(4)

Let the two parabolas intersect at A(x1,y1) and B(x2,y2).

   Equation of parabolas are

(x4)2+(y3)2=x2          ... (i)

and (x4)2+(y3)2=y2          ... (ii)

From (i) and (ii), we get x = y

 x214x+25=0 and

 x1+x2=14 and x1x2=25

  AB2=(x1x2)2+(y1y2)2=2(x1x2)2

=2[(x1+x2)24x1x2]=2[142100]=192.



Q 25 :    

The focus of the parabola y2=4x+16 is the centre of the circle C of radius 5. If the values of λ, for which C passes through the point of intersection of the lines 3xy = 0 and x + λy = 4, are λ1 and λ2,λ1<λ2, then 12λ1+29λ2 is equal to __________.          [2025]



(15)

We have, y2=4(x+4)

Focus of parabola = (–3, 0)  Center  (–3, 0)

   Equation of circle is given by (x+3)2+y2=25

Intersection point of 3xy = 0 and x + λy = 4 is

               (43λ+1,123λ+1)

Circle passes through the point of intersection of two lines 3xy = 0 and x + λy = 4.

 144λ2+24λ168=0  18λ2+3λ21=0

 λ=76,1

Now, 12λ1+29λ2 = –14 + 29 = 15.



Q 26 :    

Let A and B be the two points of intersection of the line y + 5 = 0 and the mirror image of the parabola y2=4x with respect to the line x + y + 4 = 0. If d denotes the distance between A and B, and a denotes the area of SAB, where S is the focus of the parabola y2=4x, then the value of (a + d) is __________.          [2025]



(14)

Image of point (0, 0) w.r.t. to line x + y + 4 = 0

xx1a=yy1b=2(ax1+by1+c)a2+b2

x01=y01=2(4)2  x=y=4

Image of focus (1, 0) w.r.t. to line x + y + 4 = 0

x11=y01=2(1+4)2   x=4; y=5

Equation of mirror image of parabola

(xh)2=4a(yk)(x+4)2=4(1)(y+4)

Put y = –5; we get x = –6 and –2

   A = (–6, –5); B = (–2, –5)

Distance between the points, d = AB = 4

Area of SABa=12×4×5=10

So, a + d = 14.



Q 27 :    

Let y2=12x be the parabola and S be its focus. Let PQ be a focal chord of the parabola such that (SP)(SQ) = 1474. Let C be the circle described taking PQ as a diameter. If the equation of a circle C is 64x2+64y2αx643y=β, then βα is equal to __________.          [2025]



(1328)

Given, equation of parabola is y2=12x

Focus = S = (3, 0)

Let P(3t12,6t1) and Q(3t22,6t2) are points on parabola

Also, t1t2=1

  P(3t2,6t) and Q(3t2,6t)

Now, (SP)(SQ)=1474  (3+3t2)(3+3t2)=1474

( (SP) = PM and (SQ) = QN, where PM and QN are perpendicular distance from directrix)

 (1+t2)2t2=4912  12t425t2+12=0

 t2=34,43  t=±32 or t=±23

Case I : When t=32 or t=23

Points are P(94,33) and Q(4,43)

   Equation of circle is

          (x4)(x94)+(y33)(y+43)=0

 x2+y225x4+3y27=0

On comparing with given equation of circle 64x2+64y2αx

643y=β, we get α = 400, β = 1728

Case II : When t=32 or t=23

Point are P(94,33) and Q(4,43)

Similarly, we get α = 400, β = 1728

  βα = 1728 – 400 = 1328.