Q 11 :    

Let the latus rectum of the hyperbola x29y2b2=1 subtend an angle of π3 at the centre of the hyperbola. If b2 is equal to lm(1+n), where l and m are co-prime numbers, then l2+m2+n2 is equal to __________.          [2024]



(182)

In right triangle OFP, we have tan 30°=PFOF

 13=b2a2e  e=3b2a2

e=3b29          (Given a2=9)

Squaring both sides, we get

e2=3b481          ... (i)

and  e2=1+b2a2  e2=1+b29          ... (ii)

Comparing equation (i) and (ii), we get

3b481=1+b29  b4=27+3b2

 b43b227=0  b2=32(1+13)

According to given condition, b2=lm(1+n)

On comparing, we get l = 3, m = 2 and n = 13

 l2+m2+n2=(3)2+(2)2+(13)2=9+4+160=182.



Q 12 :    

Let the foci and length of the latus rectum of an ellipse x2a2+y2b2=1, a > b be (±5, 0) and 50, respectively. Then, the square of the eccentricity of the hyperbola x2b2y2a2b2=1 equals          [2024]



(51)

Here ae = 5 and 2b2a=50

     b2a=522

     a2e2=a2b2  e2=1b2a2

     25=a2522a  2a252a50=0

 [a52][2a+52]=0  a=52  or  a=522

 e=5a=12

Also, b2=52×522=25  b=5

Now, e=1+a2b2b2=1+a2  e2=1+a2=51.



Q 13 :    

Let one focus of the hyperbola H : x2a2y2b2=1 be at (10,0) and the corresponding directrix be x=910. If e and l respectively are the eccentricity and the length of the latus rectum of H, then 9(e2+l) is equal to :          [2025]

  • 16

     

  • 15

     

  • 12

     

  • 14

     

(1)

We have, ae=10 and ae=910

 a2=9 and e=103

Now, (ae)2=a2+b2  10=9+b2 b2=1

and l=2b2a=2(1)3=23

  9(e2+l)=9(109+23)=10+6=16



Q 14 :    

Let the sum of the focal distances of the point P(4, 3) on the hyperbola H:x2a2y2b2=1 be 853. If for H, the length of the latus rectum is l and the product of the focal distances of the point P is m, then 9l2+6m is equal to :          [2025]

  • 187

     

  • 184

     

  • 185

     

  • 186

     

(3)

Given, hyperbola (H) : x2a2y2b2=1

Sum of focal distance of P(4, 3) = 853

 2ex=853  2e(4)=853  e2=53

 b2=a2(531)  b2=23a2          ... (i)

 16a29b2=1          ... (ii)

Using (i) and (ii), we get

 a2=52, b2=53

Now, length of latus rectum, l=2b2a  l2=4b4a2

 l2=4×(5/3)25/2  9l2=40

Also, m=(ex+a)(exa)=(ex)2(a)2

=53(16)52=1456

 6m=145

  9l2+6m=40+145=185.



Q 15 :    

Let e1 and e2 be the eccentricities of the ellipse x2b2+y225=1 and the hyperbola x216y2b2=1, respectively. If b < 5 and e1e2=1, then the eccentricity of the ellipse having its axes along the coordinate axes and passing through all four foci (two of the ellipse and two of the hyperbola) is :          [2025]

  • 32

     

  • 45

     

  • 35

     

  • 74

     

(3)

We have, e12=1b225 and e22=1+b216

  e1e2=1     (Given)

  e12e22=1

 (1b225)(1+b216)=1

 1+b216b225b4400=1

 9b2400=b4400

 b2=9

We get, x29+y225=1 and x216y29=1

Here, e1=1925=45 and e2=1+916=54

Foci : (0,±4) and (±5,0)

The ellipse passing through all four foci is x225+y216=1

Now, the eccentricity is given by e=11625=35.



Q 16 :    

Let the foci of a hyperbola be (1, 14) and (1, –12). If it passes through the point (1, 6) then the length of its latus-rectum is :          [2025]

  • 256

     

  • 245

     

  • 1445

     

  • 2885

     

(4)

Distance between foci (11)2+(14+12)2

 2be=26  be=13

Mid-point of foci =(1+12,14122)=(1,1)

Equation of hyperbola is (x1)2a2+(y1)2b2=1

Hyperbola passes through (1, 6)

  (61)2b2=1  b2=25

Now, a2=b2(e21)=b2e2b2=16925=144

  a2=144 and b2=25

   Length of latus rectum =2a2b=2×1445=2885



Q 17 :    

Let E : x2a2+y2b2=1, a > b and H : x2A2y2B2=1. Let the distane between the foci of E and the foci of H be 23. If aA = 2, and the ratio of the eccentricities of E and H is 13, then the sum of the lengths of their latus rectums is equal to:          [2025]

  • 9

     

  • 7

     

  • 10

     

  • 8

     

(4)

We have, E : x2a2+y2b2=1, whose foci are (±ae, 0) and H : x2A2y2B2=1, whose foci are (±Ae', 0).

Given, 2ae=23 and 2Ae'=23

 ae=3 and Ae'=3

 aeAe'=1  ee'=Aa

 13=Aa a=3A          [Given ee'=13]

Now, aA = 2  2A = 1          [a = 3A]

 A=1, a=3

  e=13 and e'=3

Also, b2=a2(1e2) and B2=A2((e')21)

 b2=9(1(13)2) and B2=(1)2((3)21)

 b2=6 and B2=2

   Sum of latus rectum =2b2a+2B2A=8.



Q 18 :    

If A and B are the points of intersection of the circle x2+y28x=0 and the hyperbola x29y24=1 and a point P moves on the line 2x – 3y + 4 = 0, then the centroid of PAB lies on the line :         [2025]

  • x + 9y = 36

     

  • 9x – 9y = 32

     

  • 4x – 9y = 12

     

  • 6x – 9y = 20

     

(4)

We have, x2+y28x=0          ... (i)

and x29y24=1  4x29y2=36          ... (ii)

Solving (i) and (ii), we get

4x29(8xx2)=36

 13x272x36=0

 (13x+6)(x6)=0

 x=613,6

  x=6          [  x=613 not possible]

From (i), y2=8(6)(6)2=4836=12  y=±12

   (6,12) and (6,12) are the points of intersection of circle and hyperbola.

Let P(α,β) be the point moves on the line 2x – 3y + 4 = 0 such that

2α3β+4=0          ... (iii)

Centroid of PAB is given by (α+6+63,β3)=(h,k)

  α=3h12 and β=3k

From (iii), 2(3h –12) – 3(3k) + 4 = 0

 6h249k+4=0  6h9k=20

i.e., 6x – 9y = 20.



Q 19 :    

Let the product of focal distances of the point P(4,23) on the hyperbola H : x2a2y2b2=1 be 32. Let the length of the conjugate axis of H be p and the length of its latus rectum be q. Then p2+q2 is equal to __________.          [2025]



(120)

We have, P(4,23)

Now, PS1·PS2=32          ... (i)

where S1=(ae,0) and S2=(ae,0)

ALso, |PS1PS2|=2a

Now, P(4,23) lies on H

  16a212b2=1

 16b212a2=a2b2          ... (ii)

Now, |PS1PS2|2=4a2

 PS12+PS222PS1·PS2=4a2

 (ae4)2+12+(ae+4)2+1264=4a2

 2a2e28=4a2  a2+b24=2a2

 b2a2=4          ... (iii)

From equation (ii) and (iii)

 16(a2+4)12a2=a2(a2+4)

 16a2+6412a2=a4+4a2

 a4=64  a2=8      b2=12

Now, p2+q2=4b2+4b4a2=120.



Q 20 :    

If the equation of the hyperbola with foci (4, 2) and (8, 2) is 3x2y2αx+βy+γ=0, then α+β+γ is equal to __________.          [2025]



(141)

Equation of hyperbola is (x6)2a2(y2)24a2=1

 (4a2)(x6)2a2(y2)2=a2(4a2)

 (4a2)x2a2y2+(12a248)x+4a2y+14444a2+a4=0

On comparing with 3x2y2αx+βy+γ=0, we get a2=1 and α=36β=4 and γ=101

  α+β+γ=141