Q 11 :    

Let the latus rectum of the hyperbola x29y2b2=1 subtend an angle of π3 at the centre of the hyperbola. If b2 is equal to lm(1+n), where l and m are co-prime numbers, then l2+m2+n2 is equal to __________.          [2024]



(182)

In right triangle OFP, we have tan 30°=PFOF

 13=b2a2e  e=3b2a2

e=3b29          (Given a2=9)

Squaring both sides, we get

e2=3b481          ... (i)

and  e2=1+b2a2  e2=1+b29          ... (ii)

Comparing equation (i) and (ii), we get

3b481=1+b29  b4=27+3b2

 b43b227=0  b2=32(1+13)

According to given condition, b2=lm(1+n)

On comparing, we get l = 3, m = 2 and n = 13

 l2+m2+n2=(3)2+(2)2+(13)2=9+4+160=182.



Q 12 :    

Let the foci and length of the latus rectum of an ellipse x2a2+y2b2=1, a > b be (±5, 0) and 50, respectively. Then, the square of the eccentricity of the hyperbola x2b2y2a2b2=1 equals          [2024]



(51)

Here ae = 5 and 2b2a=50

     b2a=522

     a2e2=a2b2  e2=1b2a2

     25=a2522a  2a252a50=0

 [a52][2a+52]=0  a=52  or  a=522

 e=5a=12

Also, b2=52×522=25  b=5

Now, e=1+a2b2b2=1+a2  e2=1+a2=51.