Q 11 :    

If the length of the minor axis of an ellipse is equal to one fourth of the distance between the foci, then the eccentricity of the ellipse is :          [2025]

  • 319

     

  • 57

     

  • 316

     

  • 417

     

(4)

Let x2a2+y2b2=1 be the given ellipse with length of minor axis as 2b and distance between foci is 2ae.

  2b=14×(2ae)  4b=ae  ba=e4          ... (i)

We know, e=1b2a2  e=1e216          [From (i)]

 e2=16e216  16e2=16e2  17e2=16

e=417.



Q 12 :    

A line passing through the point P(5,5) intersects the ellipse x236+y225=1 at A and B such that (PA)·(PB) is maximum. Then 5(PA2+PB2) is equal to :          [2025]

  • 338

     

  • 377

     

  • 218

     

  • 290

     

(1)

x5cos θ=y5sin θ=r

x=r cos θ+5

y=r sin θ+5

25x2+36y2=900, (x,y) lie on E

r2[25 cos2θ+36 sin2θ]+r[505cos θ+725sin θ]+25[5]+36[5]=900

r1r2=90030525+11 sin2θ, (r1r2)max=59525=1195

 |r1·r2|max=(59525)=(1195) at θ=0

x236+y225=1

At y=5

x236+15=1  x236=45  x=±125

PA2+PB2=(PA+PB)22PA·PB=(245)22·1195

5(PA2+PB2)=5(24252.1195)=242238=338.



Q 13 :    

Let C be the circle of minimum area enclosing the ellipse E:x2a2+y2b2=1 with eccentricity 12 and foci (±2,0). Let PQR be a variable triangle, whose vertex P is on the circle C and the side QR of length 2a is parallel to the major axis of E and contains the point of intersection of E with the negative y-axis. Then the maximum area of the triangle PQR is :          [2025]

  • 6(2+3)

     

  • 8(3+2)

     

  • 6(3+2)

     

  • 8(2+3)

     

(4)

Given, foci =(±2,0)=(±ae,0) and eccentricity (e)=12

  ae=2

 a×12=2  a=4                                     [e=12]

Now, b2=a2(1e2)

=16(114)=12  b=23

Since, the circle of minimum area enclosing the ellipse has a radius equal to semi-major axis i.e., a

   Radius = a = 4

Height of PQR=radius+23=4+23

Hence, required area

          =12×base×height=12×2a×(4+23)

          =4(4+23)=8(2+3) sq. units.



Q 14 :    

The length of the latus-rectum of the ellipse, whose foci are (2, 5) and (2, –3) and eccentricity is 45, is          [2025]

  • 65

     

  • 103

     

  • 185

     

  • 503

     

(3)

We have, two foci (2, 5), (2, –3) and eccentricity =4/5

 2be=8  be=4  b(45)=4  b=5

  c2=b2a2  16=25a2  a = 3

   Length of latus rectum = 2a2b=185



Q 15 :    

The centre of a circle C is at the centre of the ellipse E : x2a2+y2b2=1, a > b. Let C pass through the foci F1 and F2 of E such that the circle C and the ellipse E intersect at four points. Let P be one of these four points. If the area of the triangle PF1F2 is 30 and the length of the major axis of E is 17, then the distance between the foci of E is :          [2025]

  • 26

     

  • 13

     

  • 12

     

  • 132

     

(2)

We have, the ellipse (E) : x2a2+y2b2=1, (a > b)

 x2+a2y2b2=a2          ... (i)

The circle is x2+y2=a2e2         ... (ii)

Using (i) and (ii),

 y2(1a2b2)=a2(e21)=a2(1b2a21)=b2

 y2(b2a2)b2=b2  y2b4a2b2  |y|=b2a2b2

Area of triangle =12×2ae×b2a2b2=30

 ab2ea1b2a2=b2=30

Given, 2a=17  a=172.

   Distance between the foci = 2ae

=171b2a2=17130×4289=13.

 



Q 16 :    

Let for two distinct values of p the lines y = x + p touch the ellipse E : x242+y232=1 at the points A and B. Let the line y = x intersect E at the points C and D. Then the area of the quadrilateral ABCD is equal to :          [2025]

  • 24

     

  • 36

     

  • 48

     

  • 20

     

(1)

We have ellipse E : x242+y232=1

and line y = x + p  slope, m = 1

E and line y = x + p has point of contacts as A and B.

So, the point of contact

=(a2ma2m2+b2,±b2a2m2+b2)=(165,±95)

Then,  A(165,95) and B(165,95)

Now, line y = x intersects with ellipse E at

            D(125,125) and C(125,125)

ABCD does not form any quadrilateral but if we do not consider the order then we have,

Area of ABC=12|1659511659511251251|=12

   Area of quadrilateral ABCD = 2 (Area of ABC) = 24 sq. units



Q 17 :    

Let the system of equations

          x + 5yz = 1

          4x + 3y – 3z = 7

          24x + y + λzμ

λ,μR, have infinitely many solutions. Then the number of the solutions of this system, if x, y, z are integers and satisfy 7x+y+z77, is :          [2025]

  • 3

     

  • 5

     

  • 6

     

  • 4

     

(1)

For infinitely many solutions, we have, D = 0

 |151433241λ|=0

 1(3λ+3)5(4λ+72)1(472)=0

 17λ=289  λ=17          ... (i)

Now, D1=0

 |151733μ117|=0

 1(51+3)5(119+3μ)1(73μ)=0

 48+59515μ7+3μ=0  12μ=540

 μ=45          ... (ii)

Using (i) and (ii), we get

x+5yz=1, 4x+3y3z=7, 24x+y17z=45

 z=x+5y1

  4x+3y3x15y+3=7

 x12y=4

 x=4+12y and z=4+12y+5y1=3+17y

   (x, y, z) = (4 + 12k, k, 3 + 17k)          ( Assume y = k)

Also, 77+30k77

 030k<70

 0k2.3  k=0,1,2

Thus, there are three possible solutions.



Q 18 :    

Let p be the number of all triangles that can be formed by joining the vertices of a regular polygon P of n sides and q be the number of all quadrilaterals that can be formed by joining the vertices of P. If p + q = 126, then the eccentricity of the ellipse x216+y2n=1 is:          [2025]

  • 74

     

  • 12

     

  • 12

     

  • 34

     

(3)

Total triangles =C3n

Total quadrilaterals =C4n

  C3n+C4n=126  C4n+1=126

 n=8

The ellipse is x216+y2n=1  x216+y28=1

  e=1816=816=12



Q 19 :    

Let the ellipse 3x2+py2=4 pass through the centre C of the circle x2+y22x4y11=0 of radius r. Let f1,f2 be the focal distances of the point C on the ellipse. Then 6f1f2r is equal to          [2025]

  • 78

     

  • 68

     

  • 70

     

  • 74

     

(3)

Given, equation of circle is x2+y22x4y11=0

It can be written as

          (x1)2+(y2)2=16

   Centre of circle is (1, 2) and radius is 4.

Now, ellipse 3x2+py2=4 passes through (1, 2)

 3+4p=4  p=14

   Given equation of ellipse is 3x2+14y2=4

i.e.x24/3+y216=1

  a2=43 and b2=16  a=23 and b=4

Now, eccentricity of ellipse =1a2b2=14316=1112

Now, focal distance of ellipse from (1, 2) =4±1112×2

  f1=4+21123=4+113 and f2=4113

Now, f1f2=16113=373

  6f1f2r=744=70.



Q 20 :    

The length of the chord of the ellipse x24+y22=1, whose mid-point is (1,12), is:          [2025]

  • 1315

     

  • 15

     

  • 2315

     

  • 5315

     

(3)

We have, x24+y22=1          ,,, (i)

Mid-point of chord is (1,12)

The equation of chord to the ellipse x2a2+y2b2=1 bisected at the point (x1,y1) is given by

xx1a2+yy1b21=x12a2+y12b21

  x·14+y·1/221=14+(12)221

 x+y=3/2          ... (ii)

On solving equation (i) and (ii), we get

x=6±306 and y=32(6±306)

Let x1=6+306, x2=6306

and y1=32(6+306), y2=32(6306)

   The length of chord

=(6+306(6306))2+(32(6+306)32+(6306))2

=309+309=609

=2315