Q 1 :

Let the first term a and the common ratio r of a geometric progression be positive integers. If the sum of squares of its first three terms is 33033, then the sum of these three terms is equal to            [2023]

  • 231 

     

  • 241 

     

  • 210   

     

  • 220

     

(1)

We have, first term=a 

Common ratio=r 

According to question, a2+(ar)2+(ar2)2=33033 

a2(1+r2+r4)=33033 

a=11,  r=4 

 Required sum =a+ar+ar2 

=11+11×4+11(4)2=11+44+176=231



Q 2 :

Let a1,a2,a3,...... be a G.P. of increasing positive numbers. Let the sum of its 6th and 8th terms be 2 and the product of its 3rd and 5th terms be 19. Then 6(a2+a4)(a4+a6) is equal to                 [2023]

  • 22

     

  • 2

     

  •  

  • 33

     

(3)

Given, a6+a8=2 

ar5(1+r2)=2  ...(i) 

      a3×a5=19  (Given) 

ar2×ar4=19(ar3)2=19ar3=±13  ...(ii) 

Now, by (i) and (ii), we get 

ar3r2(1+r2)=2(±13)r2(1+r2)=2r2(1+r2)3=2 

r4+r2-6=0 r2=2r=2 

      a(22)=13                             (By (ii)) 

      a=162 

   6(a2+a4)(a4+a6)=6(ar+ar3)(ar3+ar5) 

         =6ar(1+r2)ar3(1+r2)=6a2r4(1+r2)2 

         =6(172)·4(1+2)2=3



Q 3 :

For three positive integers p,q,r,xpq2=yqr=zp2r and r=pq+1 such that 3,3logyx,3logzy, 7logxz are in A.P. with common difference 1/2. The r-p-q is equal to          [2023]

  • 6

     

  • 2

     

  • 12 

     

  • - 6 

     

(2)

pq2logx=qrlogy=p2rlogz 

Now, 3logxlogy-3=12logxlogy=76=qrpq2=rpq

7pq=6r7(r-1)=6rr=7

and 3logylogz-3=1logylogz=43=p2rqr=p2q3p2=4q 

Also, 7logzlogx-3=327logzlogx=927pq2p2r=7q2pr 

7q2p×7=92q2p=922q2=9p4q4=81p2

⇒ 4q4=27×3p2=27×4qq3=27q=3

We have, r=pq+17=3p+1p=2 

  r-p-q=7-2-3=2



Q 4 :

Let a,b,c>1,a3,b3 and c3 be in A.P., and logab,logca and logbc be in G.P. If the sum of first 20 terms of an A.P., whose first term is a+4b+c3 and the common difference is a-8b+c10 is -444, then abc is equal to              [2023]

  • 343

     

  • 216

     

  • 3438

     

  • 1258

     

(2)

a3,b3,c3 are in A.P. and logab,logca,logbc are in G.P. 

logcalogab=logbclogca

 logea×logealogec×logeb=logeclogeb×logeclogea

(logea)3=(logec)3logea=logeca=c  ...(i)

b3-a3=c3-b3b3-a3=a3-b3 

b3=a3a=ba=b=c

First term, a1=a+4b+c3,  d=a-8b+c10 

      S20=-444

-444=10[2×6a3+19×(-6a10)] 

-444=10[4a-575a]-444=10[20a-57a5]

-444=2(-37a)-222=-37a 

a=6         abc=a3=63=216



Q 5 :

If the sum and product of four positive consecutive terms of a G.P., are 126 and 1296, respectively, then the sum of common ratios of all such GPs is         [2023]

  • 92

     

  • 3

     

  • 7

     

  • 14

     

(3)

Let the terms be ar3,ar,ar,ar3 

According to question, ar3·ar·ar·ar3=1296a=6

Now, ar3+ar+ar+ar3=1261r3+1r+r+r3=21 

(r+1r)3-2(r+1r)=21 

Let r+1r=tt3-2t-21=0 

t=3r+1r=3r2-3r+1=0

Sum of roots =r12+r22=7 

Hence, the positive sum is 7.



Q 6 :

Let 0<z<y<x be three real numbers such that 1x,1y,1z are in an arithmetic progression and x,2y,z are in a geometric progression. If xy+yz+zx=32xyz, then 3(x+y+z)2 is equal to _________ .         [2023]



(150)

2y=1x+1z  and  2y2=xz

2y=x+zxz=x+z2y2x+z=4y

Now, xy+yz+zx=32xyzy(x+z)+zx=32xz·y

4y2+2y2=32y·2y26y2=32y3y=2

  x+y+z=5y=523(x+y+z)2=3×50=150



Q 7 :

Suppose a1,a2,2,a3,a4 be in an arithmetic geometric progression. If the common ratio of the corresponding geometric progression is 2 and the sum of all 5 terms of the arithmetico-geometric progression is 492, then a4 is equal to _______ .         [2023]



(16)

Let a-2d4,a-d2,a,2(a+d),4(a+2d) be in A.G.P. 

Given that, a=2

Now,  (12+1+2+4+8)+(-12-12+2+8)d=492

312+9d=492d=1

Then,  a4=4(a+2d)=4(2+2)=16



Q 8 :

Let S=109+1085+10752+...+25107+15108. Then the value of (16S-(25)-54) is equal to _________ .             [2023]



(2175)

S=109+1085+10752++25107+15108         ...(i)

S5=1095+10852++25108+15109                   ...(ii)

Subtracting (ii) from (i), we get

4S5=109-15-152-15108-15109

=109-(15(1-15109)(1-15))=109-14(1-15109)

=109-14+14×15109    S=54(109-14+14·5109)

16S=20×109-5+15108

  16S-(25)-54=2180-5=2175



Q 9 :

For k, if the sum of the series 1+4k+8k2+13k3+19k4+... is 10, then the value of k is __________ .             [2023]



(2)

Given, 10=1+4k+8k2+13k3+19k4+ up to 

9=4k+8k2+13k3+19k4+ up to                     ...(i)

9k=4k2+8k3+13k4+19k5+ up to                ...(ii)

Subtract (ii) from (i), we get

S=9(1-1k)=4k+4k2+5k3+6k4+ up to          ...(iii)

Sk=4k2+4k3+5k4+6k5+ up to                           ...(iv)

Subtract (iv) from (iii), we get

(1-1k)S=4k+1k3+1k4+1k5+ up to                 ...(v)

Putting S=9(1-1k) from (iii) in (v), we get

          9(1-1k)2=4k+1k31-1k

9(1-1k)3=4k(1-1k)+1k39(k-1)3k3=4k(k-1k)+1k3

9(k-1)3=4k(k-1)+1

Put k-1=x, then

9x3=4(x+1)x+19x3=4x2+4x+1

9x3-4x2-4x-1=0

(x-1)(9x2+5x+1)=0(x-1)=0x=1

   k-1=1k=2



Q 10 :

The 4th term of GP is 500 and its common ratio is 1/m,mN. Let Sn denote the sum of the first n terms of this GP. If S6>S5+1 and S7<S6+12, then the number of possible values of m is _______ .        [2023]



(12)

Let the first term be A

T4=500  ;  Am3=500

S6-S5>1T6>1Am5>1

500m2>1m2<500m<500

m22                     (m)

     S7-S6<12T7<12 Am6<12500m3<12

m3>1000m11

Thus, 11m22

   m can take 12 values.