Q 1 :

Let Sk=1+2+...+kk and j=1nSj2=nA(Bn2+Cn+D), where A,B,C,DN and A has least value. Then          [2023]

  • A + B is divisible by D

     

  • A + B + C + D is divisible by 5

     

  • A + C + D is not divisible by B

     

  • A + B = 5(D - C)

     

(1)

We have, Sk=1+2++kk

Sk=k(k+1)2k=k+12

Now, j=1n(Sj)2=j=1n(j+12)2=14j=1n(j+1)2

       =14[22+32+42++(n+1)2]

        =14[12+22+32+42++(n+1)2-12]

        =14[(n+1)(n+2)(2n+3)6-1]

        =14(2n3+9n2+13n6)=n24(2n2+9n+13)

       =nA(Bn2+Cn+D)

  A=24, B=2, C=9, D=13

So, A+B=24+2=26

  A+B is divisible by D.



Q 2 :

Let an be the nth term of the series 5 + 8 + 14 + 23 + 35 + 50 + ... and Sn=k=1nak. Then S30-a40 is equal to               [2023]

  • 11280 

     

  • 11290 

     

  • 11310

     

  • 11260

     

(2)

Let S=5+8+14+23+35+50++an

     S=5+8+14+23++an-1+an

Subtracting the above two equations, we get  

0=5+3+6+9+ up to (n-1) terms -an

an=5+(n-12)[6+(n-2)×3]

           =5+3n(n-1)2=12(3n2-3n+10)

Now, Sn=k=1nak=12k=1n(3n2-3n+10)

              =12[3n(n+1)(2n+1)6-3n(n+1)2+10n]

              =12[n(n+1)(2n+1)2-3n(n+1)2+20n2]

              =12[2n3+3n2+n-3n2-3n+20n2]

              =12[2n3+18n2]=12n(n2+9)

Now, S30-a40=12×30(302+9)-12(3×402-3×40+10)

                            =13635-2345=11290



Q 3 :

Let <an> be a sequence such that a1+a2+...+an=n2+3n(n+1)(n+2). If 28k=1101ak=p1p2p3...pm, where p1,p2,....,pm are the first m prime numbers, then m is equal to               [2023]

  • 5

     

  • 6

     

  • 7

     

  • 8

     

(2)

a1+a2++an=n2+3n(n+1)(n+2)

Sn=n2+3n(n+1)(n+2)

an=Sn-Sn-1=n2+3n(n+1)(n+2)-[(n-1)2+3(n-1)n(n+1)]

     =n2+3n(n+1)(n+2)-(n-1)(n+2)n(n+1)

an=4n(n+1)(n+2)

28k=1101ak =28k=110k(k+1)(k+2)4=7k=110k(k+1)(k+2)

=7[(10×112)2+3×10×11×216+2×10×112]

=7[(5×11)2+5×11×21+10×11]

=7×5×11[55+21+2]=7×5×11×78

=2×3×5×7×11×13 =p1·p2·p3pm m=6



Q 4 :

The sum to 10 terms of the series 11+12+14+21+22+24+31+32+34+... is             [2023]

  • 56111

     

  • 58111

     

  • 55111

     

  • 59111

     

(3)

11+12+14+21+22+24+31+32+34++  up to 10 terms

r=110r1+r2+r4=12r=1102r1+r2+r4

=12r=110(r2+r+1)-(r2-r+1)(r2+r+1)(r2-r+1)

=12[r=110(1r2-r+1-1r2+r+1)]=12[1-1102+10+1]

=12[1-1100+10+1]=12[1-1111]=12×110111=55111



Q 5 :

The sum n=12n2+3n+4(2n)! is equal to            [2023]

  • 11e2+72e-4

     

  • 11e2+72e

     

  • 13e4+54e-4

     

  • 13e4+54e

     

(3)

n=12n2+3n+4(2n)!

=12n=12n(2n-1)+8n+8(2n)!

=12n=11(2n-2)!+2n=11(2n-1)!+4n=11(2n)!

e=1+1+12!+13!+14!+

e-1=1-1+12!-13!+14!-

(e+1e)=2(1+12!+14!+)

e-1e=2(1+13!+15!+)

Now,  12(n=11(2n-2)!)+2n=11(2n-1)!+4n=11(2n)!

=12[e+1e2]+2[e-1e2]+4[e+1e-22]

=(e+1e)4+e-1e+2e+2e-4

=e4+14e+3e+1e-4=e+12e4+1+44e-4

=13e4+54e-4



Q 6 :

If (20)19+2(21)(20)18+3(21)2(20)17+....+20(21)19=k(20)19, then k is equal to _________ .                 [2023]



(400)

We have,

(20)19k=(20)19+2·21·(20)18+3·(21)2·(20)17++20·(21)19 

k(20)19=2019[1+2·(2120)+3·(2120)2++20·(2120)19] 

k=1+2·2120+3·(2120)2++20(2120)19  ...(i) 

2120k=2120+2·(2120)2++19·(2120)19+20·(2120)20  ...(ii) 

Subtracting (ii) from (i), we get 

-k20=1+(2120)+(2120)2++(2120)19-20·(2120)20 

=1{(2120)20-12120-1}-20·(2120)20 =20·(2120)20-20-20·(2120)20 

-k20=-20k=400 



Q 7 :

The sum to 20 terms of the series 2·22-32+2·42-52+2·62-.......... is equal to _______ .              [2023]



(1310)

Let S=2·22-32+2·42-52+2·62+ 

=(2·22+2·42+2·62+10 terms)-(32+52+72++10 terms) 

=8(12+22+32++10 terms)-(12+32+52+72++11 terms)+1 

=8[10×11×216]-113[23×21]+1 

= 3080-1771+1=1310



Q 8 :

If the sum of the series (12-13)+(122-12·3+132)+(123-122·3+12·32-133)+(124-123·3+122·32-12·33+134)+... is αβ, where α and β are co-prime, then α+3β is equal to ________ .             [2023]



(7)

Let S=(12-13)+(122-12·3+132)+(123-122·3+12·32-133)+ 

=(x-y)+(x2-xy+y2)+(x3-x2y+xy2-y3)+,where x=12, y=13 

Multiply both sides by x+y

(x+y)S=(x2-y2)+(x3+y3)+(x4-y4)+ 

(x+y)S=(x2+x3+x4+)-(y2+y4+y6+)+(y3+y5+)

=[141-12]-[191-19]+[1271-19]                            [infinite G.P.]

=12-18+124

(12+13)·S=512

S=512×65=12                 α=1,β=2, so (α+3β)=1+3×2=7



Q 9 :

If 13+23+33+... upto n terms1·3+2·5+3·7+... upto n terms=95, then the value of n is _______.                  [2023]



(5)

Given, 13+23+33+ up to n terms1·3+2·5+3·7+ up to n terms=95 

(n(n+1)2)2r=1nr(2r+1)=95 (n(n+1)2)22r=1nr2+r=1nr=95 

(n(n+1)2)22(n(n+1)(2n+1)6)+n(n+1)2=95 

[n(n+1)2]2n(n+1)2[2(2n+1)3+1]=95n(n+1)24n+53=95

5n2-19n-30=0(5n+6)(n-5)=0n=-65, 5

Hence, n=5



Q 10 :

Let a1=b1=1 and an=an-1+(n-1),bn=bn-1+an-1,n2. If S=n=110 bn2n and T=n=18n2n-1, then 27(2S-T) is equal to _________ .     [2023]



(461)

Given, S=n=110bn2n=b12+b222++b929+b10210 

S2=b122+b223++b9210+b10211

Subtracting, we get

S2=b12+(a122+a223++a9210)-b10211

S=b1-b10210+(a12+a222++a929)

S2=b12-b10211+(a122+a223++a9210)

Subtracting, we get:   

S2=b12-b10211+(a12-a9210)+(122+223++829)

S2=a1+b12- (b10+2a9)211+T4

2S=2(a1+b1)-b10+2a929+T

27(2S-T)=28(a1+b1)- (b10+2a9)4

Given an-an-1=n-1 

   a2-a1=1a3-a2=2a9-a8=8

         _________________

         a9-a1=1+2+8=36

 a9=37

Also, bn-bn-1=an-1       b10-b1=a1+a2++a9

                                = 1+2+4+7+11+16+22+29+37 

 b10=130 

  27(2S-T)=28(1+1)-(130+2×37)4= 461