Q 1 :    

If 2 and 6 are the roots of the equation ax2+bx+1=0, then the quadratic equation, whose roots are 12a+b and 16a+b, is                   [2024]

  • 2x2+11x+12=0

     

  • x2+8x+12=0

     

  • 4x2+14x+12=0

     

  • x2+10x+16=0

     

(2)

   2 and 6 are the roots of the equation ax2+bx+1=0

       Sum of roots = -ba=8b=-8a

   Product of roots = 1a=12a=112

       b=-23. Now, 12a+b=12×112-23=-2

   and 16a+b=16×112-23=-61

       Required equation is (x+2)(x+6)=0

   i.e., x2+8x+12=0



Q 2 :    

Let α,β be roots of x2+2x-8=0. If Un=αn+βn, then U10+2U92U8 is equal to __________ .              [2024]



(4)

    Given that α,β are roots of x2+2x-8=0

   α2+2α-8=0 and β2+2β-8=0

   α2+2α=8 and β2+2β=8                            ...(i)

    Now, U10+2U92U8=α10+β10+2α9+2β92(α8+β8)

   =α9(α+2)+β9(β+2)2(α8+β8)

   =α9(8α)+β9(8β)2(α8+β8)                                                      [Using (i)]

   =8(α8+β8)2(α8+β8)=4

 



Q 3 :    

Let α,βN be roots of the equation x2-70x+λ=0, where λ2,λ3N. If λ assumes the minimum possible value, then (α-1+β-1)(λ+35)|α-β| is equal to _______ .           [2024]



(60)

Given α and β are roots of x2-70x+λ=0

α+β=70 and αβ=λ

We need to minimise λ

Let f=αβ=α(70-α).

So, f(α)=α(70-α)

0 and 70 are roots of f.

f has a minimum value at α=0 or 70

Now, λ2,λ3N

It means α and β should not be multiples of 2 and 3.

For α=1,β=69 which is a multiple of 3 similarly we can't take α=2,3,4.

So, for α=5,β=65

λ=αβ=325 is the minimum value of λ satisfying all the conditions.

Now, (α-1+β-1)(λ+35)|α-β|=(4+64)(360)|-60|=60



Q 4 :    

Let Pn=αn+βn, nN. If P10=123, P9=76, P8=47 and P1=1, then the quadratic equation having roots 1α and 1β is:          [2025]

  • x2+x1=0

     

  • x2+x+1=0

     

  • x2x+1=0

     

  • x2x1=0

     

(1)

Since, P10=123  α10+β10=123

Since, P9=76  α9+β9=76

Since, P8=47  α8+β8=47

Since, P1=1  α+β=1

  P1·P9=P10+αβP8

 1×76=123+αβ(47)

 αβ=1

Also, α+β=1

Clearly, 1α+1β=α+βαβ=11=1, 1αβ=1

Thus, the required quadratic equation is x2+x1=0.



Q 5 :    

Let α and β be the roots of x2+3x16=0, and γ and δ be the roots of x2+3x1=0. If Pn=αn+βn and Qn=γn+δn, then P25+3P242P23+Q25+Q23Q24 is equal to          [2025]

  • 4

     

  • 7

     

  • 5

     

  • 3

     

(3)

We have, x2+3x1=0          ... (i)

 x21=3x

γ and δ are the roots of equation (i)

Now, Qn=γn+δn

         Q25Q23=(γ25γ23)+(δ25δ23)

     =γ23(γ21)+δ23(δ21)

      =γ23(3γ)+δ23(3δ)=3[γ24+δ24]=3Q24

 Q25Q23Q24=(3)

Similarly, x2+3x16=0          ... (ii)

 x2+3x=16

α and β are the roots of equation (ii).

Now, Pn=αn+βn

 P25+3P24=(α25+3α24)+(β25+3β24)

      =α23(α2+3α)+β23(β2+3β)

      =α23(16)+16β23

 P25+3P242·P23=16(α23+β23)2(α23+β23)=8

Now, P25+3P242P23+(Q25Q23)Q24=8+(3)=5.



Q 6 :    

Let zC be such that z2+3iz2+i=2+3i. Then the sum of all possible values of z2 is          [2025]

  • –19 + 2i

     

  • 19 + 2i

     

  • 19 – 2i

     

  • –19 –2i

     

(4)

We have, z2+3iz2+i=2+3i

 z2+3i=z(2+3i)+(2+3i)(2+i)

 z2+3i=z(2+3i)74i

 z2z(2+3i)+7+7i=0

It is a quadratic equation in z

   Sum of roots = z1+z2=2+3i

Product of roots = z1z2=7+7i

Now, z12+z22=(z1+z2)22z1z2

           = (2+3i)22(7+7i)

           = 4 – 9 + 12i – 14 –14i

           = –19 – 2i.



Q 7 :    

Let zC be such that z2+3iz2+i=2+3i. Then the sum of all possible values of z2 is          [2025]

  • –19 + 2i

     

  • 19 + 2i

     

  • 19 – 2i

     

  • –19 –2i

     

(4)

We have, z2+3iz2+i=2+3i

 z2+3i=z(2+3i)+(2+3i)(2+i)

 z2+3i=z(2+3i)74i

 z2z(2+3i)+7+7i=0

It is a quadratic equation in z

   Sum of roots = z1+z2=2+3i

Product of roots = z1z2=7+7i

Now, z12+z22=(z1+z2)22z1z2

           = (2+3i)22(7+7i)

           = 4 – 9 + 12i – 14 –14i

           = –19 – 2i.



Q 8 :    

Let zC be such that z2+3iz2+i=2+3i. Then the sum of all possible values of z2 is          [2025]

  • –19 + 2i

     

  • 19 + 2i

     

  • 19 – 2i

     

  • –19 –2i

     

(4)

We have, z2+3iz2+i=2+3i

 z2+3i=z(2+3i)+(2+3i)(2+i)

 z2+3i=z(2+3i)74i

 z2z(2+3i)+7+7i=0

It is a quadratic equation in z

   Sum of roots = z1+z2=2+3i

Product of roots = z1z2=7+7i

Now, z12+z22=(z1+z2)22z1z2

           = (2+3i)22(7+7i)

           = 4 – 9 + 12i – 14 –14i

           = –19 – 2i.



Q 9 :    

If α and β are the roots of the equation 2z23z2i=0, where i=1, then 16·Re(α19+β19+α11+β11α15+β15)·Im(α19+β19+α11+β11α15+β15) is equal to          [2025]

  • 441

     

  • 409

     

  • 312

     

  • 398

     

(1)

We have, 2z23z2i=0          ... (i)

 2(ziz)=3

 α1α=32          [  α is a root of equation (i)]

 α21α22i=94  α21α2=94+2i

 α41α42=81164+9i  α41α4=4916+9i

Similarly, β4+1β4=4916+9i

α19+β19+α11+β11α15+β15=α15(α4+1α4)+β15(β4+1β4)α15+β15

=(4916+9i)(α15+β15)α15+β15=4916+9i

  16·Re(α19+β19+α11+β11α15+β15)·Im(α19+β19+α11+β11α15+β15)

=16×4916×9=441.



Q 10 :    

Let f : R{0}(,1) be a polynomial of degree 2, satisfying f(x)f(1x)=f(x)+f(1x). If f(K) = –2K, then the sum of squares of all possible values of K is :          [2025]

  • 1

     

  • 6

     

  • 9

     

  • 7

     

(2)

We have, f(x)f(1x)=f(x)+f(1x)

 f(x)f(1x)f(x)=f(1x)

 f(x)=f(1x)f(1x)1          ... (i)

Also, f(x)f(1x)f(1x)=f(x)

 f(1x)=f(x)f(x)1

On multiplying (i) and (ii), we get

f(x)f(1x)=f(1x)f(x){f(1x)1}{f(x)1}

 (f(1x)1)(f(x)1)=1)          ... (iii)

Since, f(x) is polynomial function, so f(x) – 1 and f(1x)1 are reciprocal of each other. Also x and 1x are reciprocal of each other.

So, (iii) hold only if, f(x)1=±xn, nR

  f(x)=1±xn

As, f(x) is a polynomial of degree 2 and range (,1)

  f(x)=1x2

Now, f(K)=2K  1k2=2K K22K1=0

Let its roots i.e., possible values of K be α and β

  α2+β2=(α+β)22αβ=42(1)=6