Q 1 :    

Let the sum of the maximum and the minimum values of the function f(x)=2x2-3x+82x2+3x+8 be mn, where gcd(m,n)=1. Then m+n is equal to                  [2024]

  • 182

     

  • 217

     

  • 201

     

  • 195

     

(C)

Let f(x)=2x2-3x+82x2+3x+8=y,2x2+3x+8>0 xR

x2(2y-2)+x(3y+3)+8y-8=0

For real roots, D0

(3y+3)2-4(2y-2)(8y-8)0

(3y+3)2-(8y-8)20

(11y-5)(-5y+11)0

(y-511)(y-115)0y[511,115]

Sum of maximum and minimum values

ymax+ymin=511+115=14655=mnm+n=201

 

 

 



Q 2 :    

The coefficients a,b,c in the quadratic equation ax2+bx+c=0 are chosen from the set {1, 2, 3, 4, 5, 6, 7, 8}. The probability of this equation having repeated roots is:             [2024]

  • 3256  

     

  • 1128

     

  • 164

     

  • 3128

     

(C)

For equation ax2+bx+c=0 to have repeated roots we have

D=b2-4ac=0

b2=4ac=22(ac)

ac must be a perfect square.

(a,c)={(1,1),(1,4),(2,2),(2,8),(3,3),(4,1),(4,4),(5,5),(6,6),(7,7),(8,2),(8,8)}

(a,b,c)={(1,2,1),(1,4,4),(2,4,2),(2,8,8),(3,6,3),(4,4,1),(4,8,4),(8,8,2)}

Required probability =883=164



Q 3 :    

Let α,β be the distinct roots of the equation x2-(t2-5t+6)x+1=0, tR and an=αn+βn. Then the minimum value of a2023+a2025a2024 is            [2024]

  • -1/2

     

  • 1/2

     

  • 1/4

     

  • -1/4

(D)

Newton's Theorem says that for a quadratic equation ax2+bx+c=0 if a and b are its roots and an=αn±βn, then aan+1+ban+can-1=0.

So, by Newton's theorem, we have

         a2025-(t2-5t+6)a2024+a2023=0

t2-5t+6=a2025+a2023a2024

Now, t2-5t+6=(t-52)2-14

Minimum value =-14

 



Q 4 :    

Let S be the set of positive integral values of a for which ax2+2(a+1)x+9a+4x2-8x+32<0,xR. Then, the number of elements is S is                    [2024]

  •  

  • 0

     

  • 1

     

  • 3

     

(B)

Given ax2+2(a+1)x+9a+4x2-8x+32<0,xR

For x2-8x+32,

D=b2-4ac,D=(-8)2-4(1)(32),D=64-128,

D=-64<0,a>0

So, x2-8x+32>0, when

   ax2+2(a+1)x+9a+4<0,xR

       a<0 and D<0

Here, S is the set of positive integral values of x, which is not possible.

So, the number of elements in S=0

 



Q 5 :    

The coefficients a,b,c in the quadratic equation ax2+bx+c=0 are from the set {1, 2, 3, 4, 5, 6}. If the probability of this equation having one real root bigger than the other is p, then 216p equals:                    [2024]

  • 76

     

  • 38

     

  • 57

     

  • 19

     

(B)

We need to find the probability that the given equation ax2+bx+c=0 has real and distinct roots.

       [ One root will be bigger if roots are distinct]

    D>0

b2-4ac>0

b1,2           if b=1or 2

then ac<14 or ac<1 which is not possible as

a,b,c{1,2,3,4,5,6}.

If b=3

ac<94(a,c)={(1,1),(1,2),(2,1)}

i.e., 3 ways

If b=4

ac<4(a,c)={(1,1),(1,2),(2,1),(3,1),(1,3)}.

i.e., 5 ways

If b=5

ac<254(a,c)={(1,1),(1,2),(2,1),(3,1),(1,3),(2,2),(1,4),(1,5),(2,3),(3,2),(4,1),(5,1),(6,1),(1,6)}.

i.e., 14 ways

If b=6

ac<9(a,c)={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(4,1),(4,2),(5,1),(6,1)}

i.e., 16 ways

    Total number of ways = 3 + 5 + 14 + 16 = 38

 Required probability =3863=p

So, 216p=38216×216=38



Q 6 :    

The number of distinct real roots of the equation |x| |x+2|-5|x+1|-1=0 is _________              [2024]



(3)

f(x)=|x||x+2|-5|x+1|-1=0

Case 1 : x0

    f(x)=x(x+2)-5(x+1)-1=0

x2+2x-5x-6=0x2-3x-6=0

x=3±9+242

x=3±332, One positive root [ x0]

Case 2: -1x<0

f(x)=-x(x+2)-5(x+1)-1=0

-x2-7x-6=0x2+7x+6=0

(x+6)(x+1)=0

x=-6,-1  One root i.e., x=-1

Case 3 : -2x<-1

f(x)=-x(x+2)+5(x+1)-1=0

-x2-2x+5x+4=0

-x2+3x+4=0x2-3x-4=0

(x+1)(x-4)=0x=-1,4

No root possible in given range of x.

Case 4 : x<-2

f(x)=-x(-x-2)+5(x+1)-1=0

x2+2x+5x+4=0

x2+7x+4=0

x=-7±49-162=-7±332

One root in the range.

       We have 3 distinct real roots



Q 7 :    

The number of real solutions of the equation x|x+5|+2|x+7|-2=0 is _______.       [2024]



(3)

Let f(x)=x|x+5|+2|x+7|-2 and f(x)=0

Case 1 : x-5

x2+5x+2x+12=0

x2+7x+12=0x=-3 or x=-4

Case 2 : -7<x<-5

-x2-5x+2x+12=0

-x2-3x+12=0x2+3x-12=0

x=-3±572

x-3+572                               [ -7<x<-5]

Case 3 : x-7

-x2-7x-16=0x2+7x+16=0

No real solution

So Number of real solutions = 3