Q 41 :

If the mean of the frequency distribution

Class : 0–10 10–20 20–30 30–40 40–50
Frequency : 2 3 x 5 4

 

is 28, then its variance is _____ .                                [2023]



(151)

xi fi xi·fi
5 2 10
15 3 45
25 x 25x
35 5 175
45 4 180
  n=14+x xifi=410+25x

 

Mean, x¯=410+25x14+x28=410+25x14+x

392+28x=410+25x3x=18

 x=6

  n=20

Variance (σ2)=fixi2n-(28)2

=2×52+3×152+6×252+5×352+4×45220-(28)2

=(2×25)+(3×225)+(6×625)+(5×1225)+(4×2025)20-784

=935-784=151



Q 42 :

Let the positive numbers a1,a2,a3,a4 and a5 be in a G.P. Let their mean and variance be 3110 and mn respectively, where m and n are co-prime. If the mean of their reciprocals is 3140 and a3+a4+a5=14, then m+n is equal to _______ .            [2023]



(211)

Let ar2,ar,a,ar,ar2 be positive numbers in G.P.

 ar2+ar+a+ar+ar2=5×3110                         ...(i)

and r2a+ra+1a+1ar+1ar2=5×3140                 ...(ii)

Divide (i) by (ii), we get

a(1r2+1r+1+r+r2)1a(r2+r+1+1r+1r2)= 5×31105×3140

a2=4  

 a=2                                (a cannot be negative)

From (i),     a(1r2+1r+1+r+r2)=5×3110

 (r+1r)2+(r+1r)=314+1

 4t2+4t-35=0                                                  [Let, r+1r=t]

t=52r=2

   Numbers are =12,1,2,4,8

   σ2=x2N-(xN)2=14+1+4+16+645-(3110)2

=34120-961100=18625               m+n=186+25=211



Q 43 :

If the variance of the frequency distribution

x𝑖 2 3 4 5 6 7 8
Frequency fi 3 6 16 α 9 5 6

 

is 3, then α is equal to _______.                                   [2023]



(5)

xi fi di=xi-5 di2 fidi2 fidi
2 3 - 3 9 27 - 9
3 6 - 2 4 24 - 12
4 16 - 1 1 16 - 16
5 α 0 0 0 0
6 9 1 1 9 9
7 5 2 4 20 10
8 6 3 9 54 18
Total 45+α     150 0

 

σ2=fidi2fi-(fidifi)2=15045+α-(045+α)2

 3=15045+α    ( variance =3)

135+3α=1503α=15α=5