Q 31 :

Let 9=x1<x2<<x7 be in an A.P. with common difference d. If the standard deviation of x1,x2,,x7 is 4 and the mean is x¯, then x¯+x6 is equal to          [2023]

  • 18(1+13)

     

  • 2(9+87)

     

  • 34

     

  • 25

     

(3)

Mean =x¯=i=17xi7=72[2a+6d]7=a+3d=x4

Variance=i=17(xi-x¯)27=(4)2 i=17(xi-x4)27=16

 (3d)2+(2d)2+d2+0+d2+(2d)2+(3d)27=16

 28d27=16d=2 x¯=9+3(2)=15

x6=a+5d=9+5(2)=19     x¯+x6=15+19=34



Q 32 :

Let the six numbers a1,a2,a3,a4,a5,a6 be in A.P. and a1+a3=10. If the mean of these six numbers is 192 and their variance is σ2, then 8σ2 is equal to     [2023]

  • 105

     

  • 210

     

  • 200

     

  • 220

     

(2)

Given a1,a2,a3,,a6 are in A.P.

Sum of these terms in A.P.=62[2a+5d]=192×6

2a+5d=19    ...(i)

Since a1+a3=10a+a+2d=10

2a+2d=10    ...(ii)

Solving (i) and (ii), we get a=2, d=3

So, 2,5,8,11,14,17 are the terms.

Variance, σ2 =22+52+82+112+142+1726-(192)2

=6996-3614=466-3614=10548σ2=8×1054=210



Q 33 :

The mean and variance of the marks obtained by the students in a test are 10 and 4 respectively. Later, the marks of one of the students is increased from 8 to 12. If the new mean of the marks is 10.2, then their new variance is equal to:            [2023]

  • 3.92

     

  • 3.96

     

  • 4.04

     

  • 4.08

     

(2)

Mean ,μ=10

Variance ,σ2=4

Let the number of observations be n

Sum of observations xi=10n

When marks of one student increased from 8 to 12

xi=10n-8+12=10n+4

New mean =10n+4n=10.2n=20; 4=xi220-102

Incorrect xi2=104×20=2080⇒Correct xi2=2080-82+122=2160

New σ2=216020-10.22=3.96



Q 34 :

Let S be the set of all values of a1 for which the mean deviation about the mean of 100 consecutive positive integers a1,a2,a3,,a100 is 25. Then S is         [2023]

  • {99}

     

  • ϕ

     

  • N

     

  • {9}

     

(3)

Let a1 be a natural number.

The 100 consecutive positive numbers are  a1,a1+1,a1+2,a1+3,,a1+99

Mean (x¯)=a1+a1+1+a1+2++a1+99100=a1+992

Mean deviation about the mean=i=1100|xi2-x¯|100

     =992+972+952++992100=25

Hence, a1 is a natural number.



Q 35 :

Let the mean and variance of 8 numbers x,y,10,12,6,12,4,8 be 9 and 9.25 respectively. If x>y, then 3x2y is equal to _____.          [2023]



(25)

We have, x,y,10,12,6,12,4,8

Mean, x¯=x+y+10+12+6+12+4+88=9

x+y=20    (i)

Now, Variance =x2+y2+(10)2+(12)2+(6)2+(12)2+(4)2+(8)28-81

9.25=x2+y2+5048-81x2+y2=218    (ii)

Now, (x+y)2=x2+y2+2xy

(20)2=218+2xy2xy=182

Now, (x-y)2=218-182=36x-y=±6    (iii)

From (i) and (iii), we get x=13,  y=7         (x>y)

So, 3x-2y=39-14=25



Q 36 :

Let the mean of the data

x 1 3 5 7 9
Frequency (f) 4 24 28 α 8

 

be 5. If m and σ2 are respectively the mean deviation about the mean and the variance of the data, then 3αm+σ2 is equal to ________ .     [2023]



(8)

Given, x¯=5

xififi=4+72+140+7α+7264+α=5

288+7α=320+5α2α=32α=16

Now, M.D.(x¯)=fi|xi-x¯|fi

=4×4+24×2+28×0+16×2+8×480=12880=85m=85

Variance (σ2)=fi|xi-x¯|2fi

=4×16+24×4+28×0+16×4+8×1680=35280=225

  3αm+σ2=3×1685+225=486=8



Q 37 :

The mean and standard deviation of the marks of 10 students were found to be 50 and 12 respectively. Later, it was observed that two marks 20 and 25 were wrongly read as 45 and 50 respectively. Then the correct variance is __________.            [2023]



(269)

Given, Mean X¯=50, σ=12

X¯=50-5010=45

xi210-502=144                [σ2=xi2n-(x¯)2]

xi210=2500+144

xi210=2500+144+400+625-452-50210=2294

Now correct variance: σT2=2294-(45)2=2294-2025=269



Q 38 :

Let X={11,12,13,,40,41} and Y={61,62,63,,90,91} be the two sets of observations. If x¯ and y¯ are their respective means and σ2 is the variance of all the observations in XY, then |x¯+y¯-σ2| is equal to _______ .             [2023]



(603)

Mean x¯=i=1141i31=11+412=26

y¯=j=6191j31=61+912=76

Combined mean μ=31×26+31×7631+31=26+762=51

σ2=162(i=131(xi-μ)2+i=131(yi-μ)2)=705

 |x¯+y¯-σ2|=|26+76-705|=603



Q 39 :

The mean and variance of 7 observations are 8 and 16 respectively. If one observation 14 is omitted and a and b are respectively mean and variance of remaining 6 observations, then a+3b5 is equal to ______.              [2023]



(37)

Mean=7,  Variance=16

Let the observations be x1,x2,,x7.

Now, x1+x2++x77=8,  x1+x2++x7=56

When one observation 14 is omitted, the mean is

a=x1+x2++x7-146a=56-146=7

Variance=i=17(xi)27-64=16i=17(xi)2=560

When one observation is omitted, then variance

b=i=16(xi)26-49b =560-(14)26-49=3646-49=353

So, a+3b-5=7+3×353-5=37



Q 40 :

If the mean and variance of the frequency distribution

xi 2 4 6 8 10 12 14 16
fi 4 4 α 15 8 β 4 5

 

are 9 and 15.08 respectively, then the value of α2+β2-αβ is ________ .              [2023]



(25)

xi fi xifi fixi2
2 4 8 16
4 16 64
6 α 6α 36α
8 15 120 960
10 8 80 800
12  β 12β 144β
14 4 56 784
16 5 80 1280
Total 40+α+β 360+6α+12β 3904+36α+144β

 

Mean (x¯)=fixifi360+6α+12β40+α+β=9

360+6α+12β=360+9α+9β

3α=3βα=β                               ...(i)

Also, variance σ2=fixi2fi-(fixifi)2

3904+36α+144β40+α+β-(x¯)2=15.08

3904+180α40+2α-(9)2=15.08α=5

From (i), β=5

  α2+β2-αβ=25+25-25=25