Q 1 :    

Let M denote the median of the following frequency distribution

Class 0 - 4 4 - 8 8 - 12 12 - 16 16 - 20
Frequency     3     9     10     8     6

 

Then 20 M is equal to                                                                                                         [2024]

  • 416

     

  • 52

     

  • 208

     

  • 104

     

(3)

Class Frequency Cumulative Frequency
0 - 4             3                                    3
4 - 8             9                                   12
8 - 12             10                                    22
12 - 16              8                                    30
16 - 20              6                                    36
               36  

 

Where, h=4, l=8, c.f.=12, f=10, n=18

M=l+[n2-c.f.f]×h=8+18-1210×4

=8+6×410=10.4

Now, 20M=20×10.4=208



Q 2 :    

Marks obtains by all the students of class 12 are presented in a frequency distribution with classes of equal width. Let the median of this grouped data be 14 with median class interval 12-18 and median class frequency 12. If the number of students whose marks are less than 12 is 18, then the total number of students is          [2025]

  • 48

     

  • 52

     

  • 40

     

  • 44

     

(4)

In the given question, l = 12, cf = 18, median = 14, f = 12 and h = 6

  Median = l+(N2cff)×h

 14=12+(N21812)×6

 2=N2182  4=N218

 N2=22  N=44

So, total number of students = 44.



Q 3 :    

Let x1,x2,,x100 be in an arithmetic progression with x1=2 and their mean equal to 200. If yi=i(xi-i), 1i100, then the mean of y1,y2,,y100 is           [2023]

  • 10101.50

     

  • 10051.50

     

  • 10049.50

     

  • 10100

     

(3)

Mean=2001002(2×2+99d)100=200

4+99d=400d=4

     yi=i(xi-i)=i(2+(i-1)4-i)=3i2-2i

Mean=yi100=1100i=1100(3i2-2i)

       =1100{3×100×101×2016-2×100×1012}

        =101{2012-1}=101×99.5=10049.50



Q 4 :    

The mean of the coefficients of x,x2,,x7 in the binomial expansion of (2+x)9 is __________.                 [2023]



(2736)

(2+x)9=C0929+C1928x1+C2927x2+C3926x3+C4925x4+C5924x5+C6923x6+C7922x7+C892x8+C99x9

Coefficient of x=C1928

Coefficient of x2=C2927, , coefficient of x7=C7922

Mean=C19·28+C29·27++C79·227

           =(1+2)9-C09·29-C89·21-C997

            =39-29-18-17=191527=2736



Q 5 :    

A fair n(n>1) faces die is rolled repeatedly until a number less than n appears. If the mean of the number of tosses required is n9, then n is equal to _______ .        [2023]



(10)

Mean=1·n-1n+21n(n-1n)+3(1n)2(n-1n)+

 n9=(n-1n)(1+2(1n)+3(1n)2+)

 n9=(n-1n)(1-1n)-2=(n-1n)·n2(n-1)2

 n9=nn-1n=10