Q 21 :    

A bag contains 19 unbiased coins and one coin with head on both sides. One coin drawn at random is tossed and head turns up. If the probability that the drawn coin was unbiased, is mn, gcd (m, n) = 1, then n2m2 is equal to          [2025]

  • 64

     

  • 80

     

  • 72

     

  • 60

     

(2)

Let us defined the events as

A : Unbiased coin is selected

B : Biased coin in selected

H : Head turns up.

  P(H)=P(A)P(H/A)+P(B)P(H/B)

                     =1920×12+120×1=2140

Now, P(A/H)=P(A)P(H/A)P(H)=1920×122140=1921

 mn=1921

  n2m2=441361=80.



Q 22 :    

If A and B are two events such that P(A) = 0.7, P(B) = 0.4 and P(AB¯)=0.5, where B¯ denotes the complement of B, then P(B/(AB-)) is equal to          [2025]

  • 13

     

  • 12

     

  • 16

     

  • 14

     

(4)

          P(AB¯)=P(A)P(AB)

 P(AB)=P(A)P(AB¯)

                                     =0.7 – 0.5 = 0.2

Now, P(AB¯)=P(A)P(B¯)P(AB¯)

                                     = 0.7+(1– 0.4) – 0.5 = 0.8

P(B(AB¯))=P(BA)(BB¯)

                                  =P(BA)     [P(BB¯)=0]

                                         = 0.2

Now, P(B/(AB¯))=P(B(AB¯))P(AB¯)=0.20.8=14.



Q 23 :    

Two balls are selected at random one by one without replacement from a bag containing 4 white and 6 black balls. If the probability that the first selected balls is black, given that the second selected ball is also black is mn, where gcd (m, n) = 1, then m + n is equal to :          [2025]

  • 11

     

  • 13

     

  • 4

     

  • 14

     

(4)

Required probability

          =610×59410×69+610×59=3024+30=3054=59

So, m = 5, n = 9          [ gcd (m, n) = 1]

   m + n = 14.



Q 24 :    

If A and B are two events such that P(AB)=0.1, and P(A|B) and P(B|A) are the roots of the equation 12x27x+1=0, then the value of P(A¯B¯)P(A¯B¯) is :          [2025]

  • 53

     

  • 43

     

  • 74

     

  • 94

     

(4)

We have, 12x27x+1=0

 x=13,14

Let P(AB)=13 and P(BA)=14

 P(AB)P(B)=13 and P(AB)P(A)=14

 P(B)=0.3 and P(A)=0.4

  P(AB)=0.3+0.40.1=0.6

Now, P(A¯B¯)P(A¯B¯)=P(AB¯)P(AB¯)

                                  =1P(AB)1P(AB)=10.110.6=94.



Q 25 :    

One die has two faces marked 1, two faces marked 2, one face marked 3 and one face marked 4. Another die has one face marked 1, two faces marked 2, two faces marked 3 and one face marked 4. The probability of getting the sum of numbers to be 4 or 5, when both the dice are thrown together, is          [2025]

  • 12

     

  • 23

     

  • 49

     

  • 35

     

(1)

Let x be the number shows on dice –1 and y be the number shows on dice –2.

Favorable outcomes = {(x, y) = (1, 3), (3, 1), (2, 2), (2, 3), (3, 2), (1, 4), (4, 1)}

   Required probability

                        =26×26+16×16+26×26+26×26+16×26+26×16+16×16

                        =1836=12.



Q 26 :    

A board has 16 squares as shown in the figure:

       
       
       
       

 

Out of these 16 squares, two squares are chosen at random. The probability that they have no side in common is:          [2025]

  • 45

     

  • 35

     

  • 710

     

  • 2330

     

(1)

Total ways for selecting any two squares =C216=120

Total ways for selecting common side squares =3×4Horizontal side+3×4Vertical side=24

So, required probability =124120=96120=45.



Q 27 :    

A and B alternately throw a pair of dice. A wins if he throws a sum of 5 before B throws a sum of 8, and B wins if he throws a sum of 8 before A throws a sum of 5. The probability, that A wins if A makes the first throw, is          [2025]

  • 817

     

  • 919

     

  • 917

     

  • 819

     

(2)

Let E1 be the event that A get sum of 5 and E2 be the event that B get sum of 8.

                            P(E1)=436=19 and P(E2)=536

   Required Probability

                               =P(E1)+P(E¯1)P(E¯2)P(E1)+P(E¯1)P(E¯2)P(E¯1)P(E¯2)P(E1)+...

                               =19+89×3136×19+89×3136×89×3136×19+...

                               =1916281=919.



Q 28 :    

Let A=[aij] be a square matrix of order 2 with entries either 0 or 1. Let E be the event that A is an invertible matrix. Then the probability P(E) is:          [2025]

  • 58

     

  • 38

     

  • 316

     

  • 18

     

(2)

Given : A=[aij]2×2 with entries 0 or 1.

Total possible ways for matrix A are 4×4=16 ways.

Here E = {A|A is invertible}

[1101],[1110],[1011],[0111],[1001] and [0110] = 6 matrices

Thus, probability P(E) is given by =616=38.



Q 29 :    

Two number k1 and k2 are randomly chosen from the set of natural numbers. Then, the probability that the value of ik1+ik2, (i=1) is non-zero, equals          [2025]

  • 23

     

  • 12

     

  • 14

     

  • 34

     

(4)

Given, ik1+ik20

Possible values of ik1= 4 = Possible values of ik2

  Cases are i, –1, – i, 1

  Total number cases =4×4=16

For ik1+ik2=0,

Cases are (1, –1), (–1, 1), (i, – i), (– i, i)

  Required probability =1416=1216=34.



Q 30 :    

Bag B1 contains 6 white and 4 blue balls, Bag B2 contains 4 white and 6 blue balls, and Bag B3 contains 5 white and 5 blue balls. One of the bags is selected at random and a ball is drawn from it. If the ball is white, then the probability, that the ball is drawn from bag B2, is :          [2025]

  • 25

     

  • 415

     

  • 23

     

  • 13

     

(2)

Consider the events, E1: Bag B1 is selected, E2: Bag B2 is selected, E3: Bag B3 is selected

A : Ball drawn is white. Then P(E1)=P(E2)=P(E3)=13

P(A/E1)=610,P(A/E2)=410,P(A/E3)=510

Required probability

P(E2A)=P(E2)P(AE2)P(E1)P(AE1)+P(E2)P(AE2)+P(E3)P(AE3)

                     =13×410(13)(610)+(13)(410)+(13)(510)=430630+430+530=415