Q 1 :    

If the mean of the following probability distribution of a random variable X : 

X 0 2 4 6 8
P(X) a 2a a+b 2b 3b

 

is 469, then the variance of the distribution is                                [2024]

  • 15127

     

  • 17327

     

  • 56681

     

  • 58181

     

(3)

X 0 2 4 6 8
P(X) a 2a a+b3 2b 3b

 

Mean=xiP(xi)

469=0+4a+4a+4b+12b+24b469=8a+40b

36a+180b=23                        ...(i)

Also, i-1nPi=1

4a+6b=1                                  ...(ii)

On solving (i) and (ii), we get

a=112,  b=19

Now, σ2=xi2P(xi)-(xiP(xi))2

=0+4×2a+16(a+b)+36(2b)+64(3b)-(469)2

=8(a+2(a+b)+9b+24b)-(469)2

=8(3a+35b)-(469)2  =8(312+359)-(469)2

=8(14936)-(469)2=56681



Q 2 :    

Three rotten apples are accidentally mixed with fifteen good apples. Assuming the random variable x to be the number of rotten apples in a draw of two apples, the variance of x is                          [2024]

  • 37153

     

  • 57153

     

  • 40153

     

  • 47153

     

(3)

We have,

Number of rotten apples = 3

Number of good apples = 15

x is the number of rotten apples 

x            0                               1             2
p(x) C215C218=105153 C1×C1153C218=3×15153=45153 C23C218=3153

 

E(x)=0×105153+1×45153+6153=51153=13

E(x2)=0×105153+1×45153+12153=57153

 Var(x)=E(x2)-(E(x))2=57153-(13)2=57153-19=40153



Q 3 :    

From a lot of 10 items, which include 3 defective items, a sample of 5 items is drawn at random. Let the random variable X denote the number of defective items in the sample. If the variance of X is σ2, then 96σ2 is equal to _____________ .                      [2024]



(56)

Total number of items = 10

Number of defective items = 3

    Number of non-defective items = 7 

  X           0               1               2              3
P(X) C57C510=112 C4×C137C510=512 C3×C237C510=512 C2×C337C510=112

 

Now, σ2=(X-X¯)2P(X)

X¯=XP(X)=0+512+1012+312=1812=32

  σ2=(X-32)2P(X)

=94×112+14×512+14×512+94×112=712

96σ2=8×7=56



Q 4 :    

From a lot of 12 items containing 3 defectives, a sample of 5 items is drawn at random. Let the random variable X denote the number of defective items in the sample. Let items in the sample be drawn one by one without replacement. If the variance of X is mn, where gcd(m,n)=1, then n-m is equal to ______ .             [2024]



(71)

X         0               1             2                 3
P(X) C59C512 C4×C139C512 C3×C239C512 C2×C339C512

 

Mean=XP(X)=0+126×3792+2×84×3792+3×36×1792

=378+504+108792=990792=5544

Variance=X2P(X)-(XP(X))2

=9544-(5544)2=4180-30251936=11551936=105176=mn

So, n-m=176-105=71



Q 5 :    

Three balls are drawn at random from a bag containing 5 blue and 4 yellow balls. Let the random variables X and Y respectively denote the number of blue and yellow balls. If X¯ and Y¯ are the means of X and Y respectively, then 7X¯+4Y¯ is equal to ________ .                 [2024]



(17)

Blue balls (X)         0            1           2           3
Probability P(X) C0C345C39 C15×C24C39 C2×C145C39 C3×C045C39

 

X¯=0+5×6+2×10×4+3×10×184

X¯=140847X¯=14012=353 

Yellow balls (X)          0          1          2           3
Probability P(Y) C3×C045C39 C2×C145C39 C1×C245C39 C0×C345C39

 

Y¯=0+10×4+2×5×6+3×484=112844Y¯=163

7X¯+4Y¯=353+163=17



Q 6 :    

A fair die is tossed repeatedly until a six is obtained. Let X denote the number of tosses required and let a=P(X=3),  b=P(X3) and c=P(X6X>3). Then b+ca is equal to _______ .                   [2024]



(12)

Probability of getting six =16

Probability of not getting a six =56

Let X denote the number of tosses required. Then,

 a=P(X=3)=56×56×16=5263=25216

b=P(X3)=1-[P(X=1)+P(X=2)]=1-[16+56×16]=2536

c=P(X6X>3)=P[(X6)(X>3)]P(X>3)=P(X6)P(X>3)

=(56)5×16+(56)6×16+1-16-(56)×(16)-(56)2×(16)

=(56)5×16[1+56+(56)2+]2536-25216=2536

 b+ca=2536+253625216=12