Q 91 :

Let f(x)=x(1+xn)1n, x-{-1}, n, n>2. If fn(x)=(fofof ..... upto n times) (x), then limn01xn-2(fn(x))dx is equal to _____ .       [2023]



(0)

We have, f(x)=x(1+xn)1/n

f(f(x))=x(1+2xn)1/n

     f(f(f(x)))=x(1+3xn)1/n

fn(x)=x(1+nxn)1/n

Now, limn01xn-2·(fn(x))dx=limn01xn-1(1+nxn)1/ndx

Put 1+nxn=tn2xn-1dx=dt

When x=0,t=1 and x=1,t=1+n

  limn·1n211+ndtt1/n=limn1n2[t1-1/n1-1/n]11+n

=limn1n(n-1)[(1+n)1-1/n-1]

=limh0h21-h[(1+1h)1-h-1]   (Put n=1h,n,h0)

=0



Q 92 :

Let [t] denote the greatest integer f. Then 2ππ/65π/6(8[cosecx]-5[cotx])dx is equal to ______ .           [2023]



(14)

Let I=2ππ/65π/6(8[cosecx]-5[cotx])dx

=2π[8π/65π/6[cosecx]dx-5π/65π/6[cotx]dx]

=2π[8{π/65π/61·dx}-5{π/6π/41·dx+π/4π/20·dx+π/23π/4(-1)dx+3π/45π/6(-2)dx}]

=2π[8×2π3-5{π12-π4-2×π12}]=2π[16π3+5π3]=14



Q 93 :

Let [t] denote the greatest integer function. If 02.4[x2]dx=α+β2+γ3+δ5, then α+β+γ+δ is equal to _________ .           [2023]



(6)

We have,

02.4[x2]dx=010dx+121dx+232dx+323dx+254dx+52.45dx

=2-1+2(3-2)+3(2-3)+4(5-2)+5(2.4-5)

=9-2-3-5

   α+β+γ+δ =9-1-1-1=6



Q 94 :

For m,n>0, let α(m,n)=02tm(1+3t)ndt. If 11α(10,6)+18α(11,5)=p(14)6, then p is equal to ______ .         [2023]



(32)

We have, α(m,n)=02tm(1+3t)ndt

Now, 11α(10,6)+18α(11,5)

=1102t10(1+3t)6dt+1802t11(1+3t)5dt

=11[(1+3t)6·t1111]02-11026(1+3t)5·3t1111dt+1802t11(1+3t)5dt

=[t11(1+3t)6]02=211(7)6=25(14)6

=32(14)6=p(14)6                                                    [∵ Given]

p=32



Q 95 :

If -0.150.15|100x2-1|dx=k3000, then k is equal to ___________.      [2023]



(575)

Let I=-0.150.15|100x2-1|dx

=200.15|100x2-1|dx

(-aaf(x)dx={20af(x)dx, if f(-x)=f(x) i.e. f(x) is even0,if f(-x)=-f(x) i.e. f(x) is odd)

=2{00.1-(100x2-1)dx+0.10.15(100x2-1)dx}

=2{[x-100x33]00.1+[100x33-x]0.10.15}=5753000

k=575



Q 96 :

Let for x, S0(x)=x,Sk(x)=Ckx+k0xSk-1(t)dt, where C0=1, Ck=1-01Sk-1(x)dx, k=1,2,3, Then S2(3)+6C3 is equal to _______ .    [2023]



(18)

Given, Sk(x)=Ckx+k0xSk-1(t)dt  ...(i)

Put k = 2 and x = 3 in (i),

S2(3)=C2(3)+203S1(t)dt  ...(ii)

Put k = 1 in (i),

S1(x)=C1x+0xS0(t)dt=C1x+0xtdt   [S0(x)=x]

=C1x+x22

Put S1(t)=C1t+t22 in (ii),

S2(3)=C2(3)+203(C1t+t22)dt

=3C2+2[C1t22+t36]03=3C2+2[C1(92)+(276)]

=3C2+9C1+9  
 

Given, Ck=1-01Sk-1(x)dx                           ...(iii)

Put k = 1 in (iii),

C1=1-01S0(x)dx=1-01xdx=1-(x22)01=12

Put k = 2 in (iii),

C2=1-01S1(x)dx=1-01(C1x+x22)dx

=1-[C1x22+x36]01 =1-[12×12+16] =1-[14+16]=1-512=712

Put k = 3 in (iii), C3=1-01S2(x)dx

Put k = 2 in (i), S2(x)=C2x+20xS1(t)dt=C2x+C1x2+x33

So, C3=1-01(C2x+C1x2+x33)dx

=1-[C2x22+C1x33+x412]01

=1-712×12-12×13-112=1-724-16-112

=24-7-4-224=1124

S3(3)+6C3=3C2+9C1+9+6C3

=3×712+9×12+9+6×1124=74+92+9+114

=7+18+36+114=724=18


 



Q 97 :

Let fn=0π2(k=1nsink-1x)(k=1n(2k-1)sink-1x)cosxdx, n. Then f21-f20 is equal to ________.           [2023]



(41)

Let fn=0π/2(k=1nsink-1x)(k=1n(2k-1)sink-1x)cosxdx, x

fn(x)=0π/2(1+sinx+sin2x++sinn-1x)(1+3sinx+5sin2x++(2n-1)sinn-1x)·cosxdx

Multiply and divide by sinx, we get:

0π/2[(sinx)1/2+(sinx)3/2+(sinx)5/2++(sinx)2n-12](1+3sinx+5sin2x++(2n-1)sinn-1x)cosxsinxdx

Put (sinx)1/2+(sinx)3/2+(sinx)5/2++(sinx)n-12=t

12(1+3sinx+5sin2x++(2n-1)sinn-1x)sinxcosxdx=dt

fn=20ntdtfn=n2

   f21-f20=(21)2-(20)2=441-400=41



Q 98 :

If 01(x21+x14+x7)(2x14+3x7+6)1/7dx=1l(11)m where l,m,n,m and n are coprime, then l+m+n is equal to _______ .        [2023]



(63)

01(x21+x14+x7)(2x14+3x7+6)1/7dx=1l(11)m/n, l,m,n

L.H.S.=01x(x20+x13+x6)(2x14+3x7+6)1/7dx

=01(x20+x13+x6)(2x21+3x14+6x7)1/7dx

Let 2x21+3x14+6x7=t742(x20+x13+x6)dx=7t6dt

(x20+x13+x6)dx=t66dt, When x = 0, t = 0 and when x = 1, 

t=111/7L.H.S.=0111/7(t66·t)dt

=160111/7t7dt=16[t88]0(11)1/7=118/748

Comparing with R.H.S., we get l=48, m=8, n=7

   l+m+n=48+8+7=63



Q 99 :

The value of 8π0π/2(cosx)2023(sinx)2023+(cosx)2023dx is _______ .            [2023]



(2)

Use 0af(x)dx=0af(a-x)dx to solve.
 

 



Q 100 :

The value of 1203|x2-3x+2|dx is ________ .            [2023]



(22)

Let I=1203|x2-3x+2|dx

=1203|(x-2)(x-1)|dx

=12×[01(x2-3x+2)dx-12(x2-3x+2)dx+23(x2-3x+2)dx]

=12×[(x33-3x22+2x)01+(x33-3x22+2x)23-(x33-3x22+2x)12]=22