Q 1 :    

If the area of the region {(x,y):ax2y1x,1x2,0<a<1} is (loge2)-17 then the value of 7a-3 is equal to :               [2024]

  • 2

     

  • - 1

     

  • 1

     

  • 0

     

(2)

Area of region  {(x,y):ax2y1x,1x2,0<a<1}=12(1x-ax2)dx

(ln2)-17=[lnx+ax]12=ln2+a2-(ln(1+a))

=ln2-a2a2=17a=27

So,7a-3=27×7-3=-1

 



Q 2 :    

The area (in square units) of the region enclosed by the ellipse x2+3y2=18 in the first quadrant below the line y=x is                [2024]

  • 3π

     

  • 3π+34

     

  • 3π-34

     

  • 3π+1

     

(1)

We have, x2+3y2=18

x218+y26=1

x2(32)2+y2(6)2=1

 For point of intersection of ellipse and line y=x, we have, x2+3x2=18

x2=184x2=92x=±32

Required area =03/2xdx+3/23218-x23dx

=[x22]03/2+13[x218-x2+9sin-1x32]3/232

=94+13[9sin-1(1)-322·332-9sin-1(12)]

=94+13[9π2-934-9π6]=133π=3π

 



Q 3 :    

Three points O(0,0),P(a,a2),Q(-b,b2),a>0,b>0, are on the parabola y=x2. Let S1 be the area of the region bounded by the line PQ and the parabola, and S2 be the area of the triangle OPQ. If the minimum value of S1S2 is mn,gcd(m,n)=1, then m+n is equal to _______ .                  [2024]



(7)

Equation of line PQ is, y-a2=b2-a2-b-a(x-a)

y=x(a-b)+ab

S1=-ba(x(a-b)+ab-x2)dx

           =[(a-b)x22+abx-x33]-ba

=(a-b)(a2-b2)2+ab(a+b)-(a3+b3)3

S1=16(a+b)3                                                      ...(i)

Also, S2=12|001aa21-bb21|=12ab(a+b)

Now,S1S2=(a+b)3/6ab(a+b)/2=13(a+b)2ab

=a2+b2+2ab3ab=a3b+b3a+23=13(ab+ba+2)

Now,ab+1a/b2

Minimum value of S1S2=43

So, m+n=4+3=7

 



Q 4 :    

The sum of squares of all possible values of k, for which area of the region bounded by the parabolas 2y2=kx and ky2=2(y-x) is maximum, is equal to _______ .         [2024]



(8)

ky2=2(y-x) and 2y2=kx

Point of intersection

y(ky-2(1-2yk))=0

 ky2-2(y-2y2k)=0

y=0 and ky=2(1-2yk)ky+4yk=2

y=2k+4k=2kk2+4        A=02kk2+4((y-ky22)-(2y2k))·dy

=[y22-(k2+2k)·y33]02kk2+4

=(2kk2+4)2[12-k2+42k×13×2kk2+4]=16×4×(1k+4k)2

A.M.G.M.(k+4k2)2k+4k4

So, area is maximum when k=4kk=2,-2

Sum of squares of all possible values of k

=22+(-2)2=8