Q 31 :    

Among

(S1):limn1n2(2+4+6++2n)=1

(S2):limn1n16(115+215+315++n15)=116              [2023]
 

  • Only (S1) is true

     

  • Both (S1) and (S2) are false

     

  • Only (S2) is true

     

  • Both (S1) and (S2) are true

     

(4)

(S1): limn1n2(2+4+6++2n)

=limn1n2×2(1+2+3++n)

=limn1n2×2×n(n+1)2=limn(1+1n)=1

   (S1) is true.

(S2): limn1n16115+215+315++n15=limn1n16r=1nr15

=limn1nr=1n(rn)15=01x15dx=|x1616|01=116

  (S2) is also true.



Q 32 :    

If  limx0 eax-cos(bx)-cxe-cx21-cos(2x) =17,  then 5a2+b2 is equal to            [2023]

  • 72

     

  • 64

     

  • 68

     

  • 76

     

(3)

limx0 aeax+bsinbx-c2e-cx+c2x2e-cx2sin2x=17

a-c2=0      a=c2

Again, applying (L'Hospital's rule)

limx0 a2eax+b2cosbx+c22e-cx-c3x2e-cx+c22e-cx4cos2x=17

a2+b2+c22+c224=17

a2+b2+c2=68 a2+b2+4a2=68

5a2+b2=68



Q 33 :    

limt0(11sin2t+21sin2t++n1sin2t)sin2t   is equal to               [2023]

  • n2

     

  • n2+n

     

  • n

     

  • n(n+1)2

     

(3)

Let L=limt0(11sin2t+21sin2t++n1sin2t)sin2t

L=limt0n[(1n)cosec2t+(2n)cosec2t+ +(n-1n)cosec2t+1]sin2t

L=n(1sin(0))=n(1)=n[0<kn<1,(kn)=0 for 1k<n]



Q 34 :    

The set of all values of a for which limxa[x-5]-[2x+2]=0, where [α] denotes the greatest integer less than or equal to α is equal to       [2023]

  • [-7.5,-6.5)

     

  • (-7.5,-6.5)

     

  • (-7.5,-6.5]

     

  • [-7.5,-6.5]

     

(2)

limxa([x-5]-[2x+2])=0

limxa([x]-5-[2x]-2)=0 limxa([x]-[2x])=7

Let a[x1,x+12), then x-2x=7x=-7

  a[-7,-6.5)

Let a(x+12,x+1), then x-(2x+1)=7

-x=8x=-8; a[-7.5,-7)

But limit does not exist at a=-7.5

Hence, a(-7.5,-6.5)



Q 35 :    

The value of  limx1+2-3+4+5-6++(3n-2)+(3n-1)-3n2n4+4n+3-n4+5n+4 is           [2023]

  • 3(2+1)

     

  • 32(2+1)

     

  • 2+12

     

  • 322

     

(2)

limn1+2-3+4+5-6++(3n-2)+(3n-1)-3n2n4+4n+3-n4+5n+4

=limn(1+2+3+4++3n)-2(3+6+9++3n)2n4+4n+3-n4+5n+4

=limn[3n(3n+1)2-6n(n+1)2][2n4+4n+3+n4+5n+3](n4-n-1)

=limn(3n2-3n)×n2×(2+4n3+3n4 +1+5n3+4n4)2(n4-n-1)

=limn(3-3n)(2+4n3+3n4 +1+5n3+4n4)2(1-1n3-1n4)

=3(2+1)2



Q 36 :    

Let x=2 be a root of the equation x2+px+q=0 and f(x)={1-cos(x2-4px+q2+8q+16)(x-2p)4,x2p0,x=2p

Then limx2p+[f(x)], where [·] denotes the greatest integer function, is              [2023]

  • 2

     

  • 1

     

  • - 1

     

  • 0

     

(4)

Put x=2 in x2+px+q=0 4+2p+q=0 -2p=(q+4)

Now, limx2p+1-cos(x2-4px+q2+8q+16)(x-2p)4

=limx2p+1-cos[x2-2x·2p+q2+2·q·4+42](x-2p)4

=limx2p+1-cos(x-2p)2(x-2p)4=limx2p+2sin2((x-2p)22)(x-2p)44·14

=limx2p+2×1×14=12        (limθ0sinθθ=1)

Now, [1/2]=0



Q 37 :    

Let f,g and h be real-valued functions defined on R f(x)={x|x|,x01,x=0,  g(x)={sin(x+1)(x+1),x-11,x=-1 and h(x)=2[x]-f(x), where [x] is the greatest integer x. Then the value of limx1g(h(x-1)) is                   [2023]

  • 1

     

  • 0

     

  • sin (1)

     

  • - 1

     

(1)

f(x)={x|x|,x01,x=0

and g(x)={sin(x+1)x+1,x-11,x=-1

h(x)=2[x]-f(x), [x] is the greatest integerx

LHL=limx1-g(h(x-1)) =limk0g(h(1-k-1))

=limk0g[(2[-k]--k|-k|)]=g[2(-1)+1]=limx1-g(-1)=1

RHL=limx1+g(h(x-1))=limh0g(h(1+k-1))

=limk0g(2[k]-f(k))=limh0g(0-1)=limx1+g(-1)=1

   limx1g(h(x-1))=1



Q 38 :    

limx(3x+1+3x-1)6+(3x+1-3x-1)6(x+x2-1)6+(x-x2-1)6x3                [2023]

  • is equal to 272

     

  • is equal to 9 

     

  • does not exist

     

  •  is equal to 27

     

(4)

limx(3x+1+3x-1)6+(3x+1-3x-1)6(x+x2-1)6+(x-x2-1)6×x3

limxx3×{x3[(3+1x+3-1x)6+(3+1x-3-1x)6]x6[(1+1-1x2)6+(1-1-1x2)6]}

= (3+3)6+(3-3)6(1+1)6+(1-1)6=(23)6+026+0=26·3326=33=27