Q 11 :    

Let A={zC:|z2i|=3}B={zC:Re(ziz)=2} and S=AB. Then zS|z|2 is equal to __________.          [2025]



(22)

Let z = x + iy.

We have, A : |z – 2 – i| = 3

 |(x2)+i(y1)|=3  (x2)2+(y1)2=9          ... (i)

Also, B : Re(ziz) = 2

Re((x+y)+i(yx))=2  x+y=2          ... (ii)

From (i) and (ii), we get x=3±172, y=1172

  zS|z|2=14[2×26+2×18]=22.



Q 12 :    

If for z=α+iβ, |z+2|=z+4(1+i), then α+β and αβ are the roots of the equation          [2023]

  • x2+7x+12=0

     

  • x2+x-12=0

     

  • x2+3x-4=0

     

  • x2+2x-3=0

     

(1)

We have, |z+2|=z+4(1+i)

|α+iβ+2|=α+iβ+4+4i

(α+2)2+β2=(α+4)+i(β+4)

Comparing real and imaginary parts, we get

β+4=0β=-4

Also, (α+2)2+42=(α+4)2

α2+4+4α+16=α2+16+8α4α=4α=1

Now, α+β=-3,  αβ=-4

Equation having roots - 3 and - 4 is (x+3)(x+4)=0

i.e. x2+7x+12=0



Q 13 :    

Let the complex number z=x+iy be such that 2z-3i2z+i is purely imaginary. If x+y2=0, then y4+y2-y is equal to           [2023]

  • 32

     

  • 23

     

  • 34

     

  • 43

     

(3)

Given, 2z-3i2z+i is purely imaginary.

   2z-3i2z+i+2z¯+3i2z¯-i=0

(2z-3i)(2z¯-i)+(2z¯+3i)(2z+i)=0

4zz¯-2iz-6iz¯-3+4zz¯+2iz¯+6iz-3=0

8zz¯+4iz-4iz¯-6=0                [z=x+iy]

4(x2+y2)+2i(x+iy)-2i(x-iy)-3=0

4x2+4y2-4y-3=0

4y4+4y2-4y-3=0       [x+y2=0 (Given)]

y4+y2-y=34



Q 14 :    

Let S={z=x+iy:2z-3i4z+2i is a real number}. Then which of the following is NOT correct?          [2023]
 

  • (x,y)=(0,-12)

     

  • y+x2+y2-14

     

  • y(-,-12)(-12,)

     

  • x=0

     

(1)

As, 2z-3i4z+2i is a real number.

   2z-3i4z+2i=2z-3i¯4z+2i2z-3i4z+2i=2z¯+3i4z¯-2i

(2z-3i)(4z¯-2i)=(2z¯+3i)(4z+2i)

8zz¯-4iz-12iz¯-6=8zz¯+4iz¯+12iz-6

-4i(z+z¯)-12i(z+z¯)=0

16i(z+z¯)=0z+z¯=02x=0x=0

As, y can not be -12.

 Option (1) is not possible.



Q 15 :    

For a, let A={z:Re(a+z¯)>Im(a¯+z)}  and  B={z:Re(a+z¯)<Im(a¯+z)}. Then among the two statements:

(S1) : If Re(a),Im(a)>0, then the set A contains all the real numbers.

(S2) : If Re(a),Im(a)<0, then the set B contains all the real numbers.                 [2023]

  • only (S2) is true

     

  • both are true

     

  • only (S1) is true

     

  • both are false

     

(4)

Let a=x1+iy1 and z=x+iy

Now Re(a+z¯)>Im(a¯+z)

Re(x1+iy1+x-iy)>Im(x1-iy1+x+iy)

Re(x1+x+i(y1-y))>Im(x1+x+i(y-y1))

  x1+x>-y1+y

Let x1=2, y1=10, x=-12, y=0

Given inequality is not valid for these values.

S1 is false.

Now Re(a+z¯)<Im(a¯+z)

Re(x1+x+i(y1-y))<Im(x1+x+i(y-y1))

x1+x<-y1+y

Let x1=-2, y1=-10, x=12, y=0

Given inequality is not valid for these values.

S2 is false.



Q 16 :    

Let S={z:z¯=i(z2+Re(z¯))}. Then  zS|z|2 is equal to              [2023]

  • 4

     

  • 52

     

  • 72

     

  • 3

     

(1)

 z¯=i(z2+Re(z¯))

x-iy=i(x2-y2+2ixy+x)   ;   x-iy=i(x2-y2+x)-2xy

 x=-2xy  and  y=y2-x2-x

       x=0y=y2y=0 or 1

y=-12-12=14-x2 x=12 or -32

Possible places of z=0+i0, 0+i,  12-12i, -32-i2

|z|2=0+1+(14+14)+(94+14)=1+3=4



Q 17 :    

If the set {Re(z-z¯+zz¯2-3z+5z¯) :zC,Re(z)=3} is equal to the interval (α,β], then 24 (β-α) is equal to         [2023]

  • 27

     

  • 36

     

  • 42

     

  • 30

     

(4)

Let z1=(z-z¯+zz¯2-3z+5z¯)  

Let z=3+iy                                         [Re(z)=3]

z¯=3-iy

z1=2iy+(9+y2)2-3(3+iy)+5(3-iy)

9+y2+i(2y)8-8iy=(9+y2)+i(2y)8(1-iy)×(1+iy)(1+iy)

=9+9iy+y2-2y2+iy3+2iy8(1+y2)

So, Re(z1)=(9+y2)-2y28(1+y2)=9-y28(1+y2)

=18[10-(1+y2)1+y2]=18[101+y2-1]

Thus, 1+y2[1,)11+y2(0,1]

101+y2(0,10]101+y2-1(-1,9]

Re(z1)(-18,98];  α=-18,  β=98

  24(β-α)=24(98+18)=30



Q 18 :    

Let z1=2+3i and z2=3+4i. The set S={Z:|z-z1|2-|z-z2|2=|z1-z2|2} represents a          [2023]

  • straight line with the sum of its intercepts on the coordinate axes equals −18

     

  • hyperbola with eccentricity 2

     

  • hyperbola with the length of the transverse axis 7

     

  • straight line with the sum of its intercepts on the coordinate axes equals 14

     

(4)

Let z=x+iy; z1=2+3i; z2=3+4i

|(x+iy)-(2+3i)|2-|(x+iy)-(3+4i)|2=|(2+3i)-(3+4i)|2

(x-2)2+(y-3)2-(x-3)2-(y-4)2=12+12

2x-5+2y-7=22x+2y=14x+y=7;

x intercept=y intercept=7;  sum of intercepts=14



Q 19 :    

Let z be a complex number such that |z-2iz+i|=2, z-i. Then z lies on the circle of radius 2 and centre           [2023]

  • (2, 0)

     

  • (0, 2)

     

  • (0, 0) 

     

  • (0, -2)

     

(4)

 



Q 20 :    

The complex number z=i-1cosπ3+isinπ3 is equal to            [2023]

  • 2i(cos5π12-isin5π12)

     

  • cosπ12-isinπ12

     

  • 2(cosπ12+isinπ12)

     

  • 2(cos5π12+isin5π12)

     

(4)

z=i-1cosπ3+isinπ3 =2ei3π4eiπ3

=2ei(3π4-π3) =2ei(5π12) =2(cos5π12+isin5π12)