Q 1 :    

If z1,z2 are two distinct complex number such that |z1-2z212-z1z¯2|=2, then                      [2024]

  • z1lies on a circle of radius 12and z2 lies on a circle of radius 1.

     

  • either z1 lies on a circle of radius 1 or z2 lies on a circle of radius 12.

     

  • both z1 and z2 lie on the same circle.

     

  • either z1 lies on a circle of radius 12 or z2 lies on a circle of radius 1.

     

(2)

   We have, |z1-2z212-z1z¯2|=2

   |z1-2z2|=|1-2z1z¯2|

   |z1-2z2|2=|1-2z1z¯2|2

   (z1-2z2)(z¯1-2z¯2)=(1-2z1z¯2)(1-2z¯1z2)

   |z1|2+4|z2|2-2z¯1z2-2z¯2z1

          =1+4|z1|2|z2|2-2z1z¯2-2z¯1z2

   |z1|2+4|z2|2-4|z1|2|z2|2-1=0

   (|z1|2-1)(1-4|z2|2)=0

   |z1|=1, |z2|=12



Q 2 :    

Let r and θ respectively be the modulus and amplitude of the complex number z=2-i(2tan5π8), then (r,θ) is equal to              [2024]

  • (2sec3π8,5π8)

     

  • (2sec3π8,3π8)

     

  • (2sec11π8,11π8)

     

  • (2sec5π8,3π8)

     

(2)

    We have, z=2-i(2tan5π8)

   =2+2itan(π-5π8)z=2+2itan3π8

   z=2(cos3π8+isin3π8)sec3π8

   So, r=2sec3π8,  θ=3π8

 



Q 3 :    

Let the complex numbers α and 1α¯ lie on the circles |z-z0|2=4 and |z-z0|2=16 respectively, where z0=1+i. Then, the value of 100|α|2 is ________.                     [2024]



(20)

   Given |z-z0|2=4                            ...(i)

   |z-z0|2=16                                ...(ii)

   α lies on (i),          |α-z0|2=4

  (α-z0)(α¯-z¯0)=4αα¯-αz¯0-z0α¯+|z0|2=4

  |α|2-αz¯0-z0α¯+2=4  (|z0|=2)

  |α|2-az¯0-z0α¯=2                  ...(iii)

         1α¯ lies on (ii)

       |1α¯-z0|2=16(1α¯-z0)(1α-z¯0)=16

   (1-α¯z0)(1-αz¯0)=16αα¯

   1-α¯z0-αz¯0+αα¯z0z¯0=16|α|2

   1-α¯z0-αz¯0=14|α|2                            ...(iv)

   From (iii) and (iv), we get

   15|α|2=3|α|2=315=15

      100|α|2=100×15=20

 



Q 4 :    

If α denotes the number of solutions of |1-i|x=2x and β=(|z|arg(z)), where z=π4(1+i)4[1-πiπ+i+π-i1+πi],i=-1, then the distance of the point (α,β) from the line 4x-3y=7 is __________                  [2024]



(3)

We have, |1-i|x=2x

=((1)2+(-1)2)x=2x(2)x=2x

     2x/2=2xx2=x2x-x=0x=0

α=1

and β=(|z|arg(z)), where z=π4(1+i)4[1-πiπ+i+π-i1+πi]

      z=2πiarg(z)=π2

and |z|=2π

        β=|z|arg(z)=2ππ/2=4β=4

Now, the distance of point (α,β) from the line 4x-3y=7 is given by

d=|4×1-3×4-7|16+9=|4-12-7|5=155=3

 



Q 5 :    

The area (in sq. units) of the region

S={zC:|z-1|2; (z+z¯)+i(z-z¯)2, Im(z)0} is                   [2024]

  • 7π4

     

  • 3π2

     

  • 7π3

     

  • 17π8

     

(2)

|z-1|2(x-1)2+y24

z+z¯+i(z-z¯)2

x+iy+x-iy+i(x+iy-x+iy)2

x-y1

Im(z)0

y0

  Required area=(3π42π)(π)(2)2=32π sq. units



Q 6 :    

Let S1={zC:|z|5}S2={zC:Im(z+1-3i1-3i)0} and S3={zC:Re(z)0}. Then the area of the region S1S2S3 is :           [2024]

  • 125π12

     

  • 125π24

     

  • 125π6

     

  • 125π4

     

(1)

Let z=x+iy be any complex number

S1={zC:|z|5}

S1:x2+y225                                  ...(i)

S2:Im[x+iy1-3i+1]0

i.e.,  S2:Im[(x+iy)(1+3i)4+1]0

3x+y0                                        ...(ii)

S3:{zC:Re(z)0}

x0                                                      ...(iii)

Now,  3x+y=0

y=-3x

tanθ=120°

 Required area=25π2-112(5)2π

=25π2-25π12

=125π12



Q 7 :    

The sum of the square of the modulus of the elements in the set {z=a+ib:a,bZ,zC,|z-1|1,|z-5||z-5i|} is ____________.        [2024]



(9)

We have, |z-1|1

(a-1)2+b21

and |z-5||z-5i|

(a-5)2+b2(a)2+(b-5)2

ab

      z=0+0i,1+0i,2+0i,1+i,1-i

|z|=0,1,2,2,2

  Sum of |z|2=0+1+4+2+2=9



Q 8 :    

Let z be a complex number such that |z| = 1. If 2+k2zk+z=kz, kR, then the maximum distance of  from the circle |z – (1 + 2i)| = 1 is :          [2025]

  • 3+1

     

  • 3

     

  • 5+1

     

  • 2

     

(3)

We have, 2+k2zk+z=kz

 2+k2z=k2z+kzz

 |z|2k=2          [ zz=|z|2]

 k=2          [ |z|=1]

The centre of the given circle is (1, 2) and its radius is 1.

Now, k+ik2=2+4i.

   Maximum distance = OP+r=1+4+1=5+1.



Q 9 :    

If z1,z2,z3C are the vertices of an equilateral triangle, whose centroid is z0, then k=13(zkz0)2 is equal to          [2025]

  • 0

     

  • i

     

  • – i

     

  • 1

     

(1)

Centroid of triangle is z0, then z1+z2+z3=3z0

 (z1+z2+z3)2=9z02

 z12+z22+z32+3(z12+z22+z32)=9z02          [  For equilateral , z1z2+z2z3+z3z1=z12+z22+z32]

 z12+z22+z32=3z02

Now, k=13(zkz0)2=(z1z0)2+(z2z0)2+(z3z0)2

         =z12+z22+z32+3z022(z1+z2+z3)z0

         =6z026z02=0.



Q 10 :    

If the locus of zC, such that Re(z12z+i)+Re(z12z+i)=2, is a circle of radius r and center (a, b), then 15abr2 is equal to:          [2025]

  • 12

     

  • 16

     

  • 24

     

  • 18

     

(4)

We have, Re(z12z+i)+Re(z12z+i)=2

 Re(z12z+i)+Re(z1¯2z+i)=2          [  (z1¯2z+i)=z¯12z¯i]

 2Re(z12z+i)=2  Re(z12z+i)=1

Let z = x + iy

Re((x1)+iy2x+i(2y+2))=1

 Re[((x1)+iy)(2xi(2y+1))(2x+i(2y+1))(2xi(2y+1))]=1

 2x(x1)+y(2y+1)4x2+(2y+1)2=1

 2x22x+2y2+y=4x2+4y2+1+4y

 2x2+2y2+3y+2x+1=0

 x2+y2+x+32y+12=0

   Centre=(12,34) and r=14+91612=54

 a=12, b=34, r2=516

  15abr2=15×(12)×(34)×165=18.