Q 1 :    

The angle between the electric lines of force and the equipotential surface is           [2022]

  •  

  • 45°

     

  • 90°

     

  • 180°

     

(3)

The equipotential surface is always perpendicular to the electric field lines. So, the angle between the electric lines of force and the equipotential surface is 90°.

 



Q 2 :    

The diagrams below show regions of equipotentials.

A positive charge is moved from A to B in each diagram.         [2017]

  • In all the four cases the work done is the same.

     

  • Minimum work is required to move q in figure (I).

     

  • Maximum work is required to move q in figure (II).

     

  • Maximum work is required to move q in figure (III).

     

(1)

Work done is given as W=qΔV

In all the four cases the potential difference from A to B is same.

    In all the four cases the work done is same.



Q 3 :    

If potential (in volts) in a region is expressed as V(x,y,z)=6xy-y+2yz, the electric field (in N/C) at point (1, 1, 0) is      [2015]

  • -(2i^+3j^+k^)

     

  • -(6i^+9j^+k^)

     

  • -(3i^+5j^+3k^)

     

  • -(6i^+5j^+2k^)

     

(4)

The electric field E and potential V in a region are related as E=-[Vxi^+Vyj^+Vzk^]

Here, V(x,y,z)=6xy-y+2yz 

E=-[x(6xy-y+2yz)i^+y(6xy-y+2yz)j^+z(6xy-y+2yz)k^]

         =-[(6y)i^+(6x-1+2z)j^+(2y)k^]

At point (1, 1, 0),

E=-[(6(1))i^+(6(1)-1+2(0))j^+(2(1))k^]=-(6i^+5j^+2k^)



Q 4 :    

In a region, the potential is represented by V(x,y,z)=6x-8xy-8y+6yz, where V is in volts and x,y,z are in metres. The electric force experienced by a charge of 2 coulomb situated at point (1, 1, 1) is          [2014]

  • 65 N

     

  • 30 N

     

  • 24 N

     

  • 435 N

     

(4)

Here, V(x,y,z)=6x-8xy-8y+6yz

The x,y and z components of electric field are

Ex=-Vx=-x(6x-8xy-8y+6yz)=-(6-8y)=-6+8y

Ey=-Vy=-y(6x-8xy-8y+6yz)=-(-8x-8+6z)=8x+8-6z

Ez=-Vz=-z(6x-8xy-8y+6yz)=-6y

E=Exi^+Eyj^+Ezk^

=(-6+8y)i^+(8x+8-6z)j^-6yk^

At point (1, 1, 1)

E=(-6+8)i^+(8+8-6)j^-6k^=2i^+10j^-6k^

The magnitude of electric field E is

E=Ex2+Ey2+Ez2=22+102+(-6)2

=140=235NC-1

Electric force experienced by the charge
F=qE=2C×235N C-1=435N