Q 1 :    

The plates of a parallel plate capacitor are separated by d. Two slabs of different dielectric constants K1 and K2 with thickness 38d and d2, respectively, are inserted in the capacitor. Due to this, the capacitance becomes two times larger than when there is nothing between the plates.

If K1=1.25K2, the value of K1 is                                                 [2025]

  • 1.60

     

  • 1.33

     

  • 2.66

     

  • 2.33

     

(3)

Capacitance without dielectric

C0=ε0Ad

Capacitance with first dielectric slab,

C1=K1ε0A38d=8K1ε0A3d

Capacitance with second dielectric slab,

C2=K2ε0Ad2=2K2ε0Ad

Capacitance with air,

C3=ε0A(d-3d8-d2)=ε0A×8d

Equivalent Capacitance, 1Ceq=1C1+1C2+1C3

or    1Ceq=3d8K1ε0A+d2K2ε0A+dε0A×8

or    1Ceq=dε0A[38K1+12K2+18]                             ...(ii)

Given Ceq=2C0

or   C0Ceq=12

    ε0Ad×dε0A[38K1+12K2+18]=12

38×1.25K2+12K2=12-18

310K2+12K2=38

3+510K2=38

64=30K2

K2=6430=2.13K11.25K1=2.66



Q 2 :    

In the following circuit, the equivalent capacitance between terminal A and terminal B is               [2024]

  • μF

     

  • μF

     

  • 0.5 μF

     

  • μF

     

(1)

As, Wheatstone bridge is balanced, C1C2=C3C4 and C5 becomes ineffective.

Capacitor C1 and C3 are in series.

   C13=C1C3C1+C3=1 μF

Similarly, capacitor, C2 and C4 are in series,

   C24=C2C4C2+C4=1 μF

Hence, equivalent capacitance between A and B is

C13+C24=2μF



Q 3 :    

The equivalent capacitance of the arrangement shown in figure is      [2023]

  • 30 μF

     

  • 15 μF

     

  • 25 μF

     

  • 20 μF

     

(4)

 



Q 4 :    

The equivalent capacitance of the system shown in the following circuit is   [2023]

  • μF

     

  • μF

     

  • μF

     

  • μF

     

(3)

Cp=3+3=6μF; Ceq=Cp×33+Cp=3×66+3=2μF



Q 5 :    

The equivalent capacitance of the combination shown in the figure is    [2021]

  • 3C/2

     

  • 3C

     

  • 2C

     

  • C/2

     

(3)

Here, AB arm is short, so the two capacitors C and C in parallel

Ceq=C+C=2C



Q 6 :    

A parallel-plate capacitor of area A, plate separation d and capacitance C is filled with four dielectric materials having dielectric constants k1,k2,k3, and k4 as shown in the figure. If a single dielectric material is to be used to have the same capacitance C in this capacitor, then its dielectric constant k is given by                  [2016]


 

  • k=k1+k2+k3+3k4

     

  • k=23(k1+k2+k3)+2k4

     

  • 2k=3k1+k2+k3+1k4

     

  • 1k=1k1+1k2+1k3+32k4

     

(3)

Here, C1=2ε0k1A3d,  C2=2ε0k2A3d

C3=2ε0k3A3d,  C4=2ε0k4Ad

Given system of C1,C2,C3 and C4 can be simplified as

   1CAB=1C1+C2+C3+1C4

Suppose, CAB=kε0Ad

1(kε0Ad)=12ε0A3d(k1+k2+k3)+12ε0Adk4

1k=32(k1+k2+k3)+12k4        2k=3k1+k2+k3+1k4