Q 1 :    

A big circular coil of 1000 turns and average radius 10 m is rotating about its horizontal diameter at 2 rad s-1. If the vertical component of earth’s magnetic field at that place is 2×10-5T and electrical resistance of the coil is 12.56Ω, then the maximum induced current in the coil will be          [2022]

  • 0.25 A

     

  • 1.5 A

     

  • 1 A

     

  • 2 A

     

(3)

Given, number of turns (N)=1000

Radius (r)=10 m

Angular velocity (ω)=2 rad s-1

Magnetic field (B)=2×10-5T

Electrical resistance (R)=12.56Ω

Maximum induced emf =NωAB

Here area of the circular coil A=πr2

ε=Nωπr2B=1000×2×3.14×(10)2×2×10-5

ε=12.56V

The maximum induced current is, imax=εR

imax=12.5612.56=1 A



Q 2 :    

A 800 turn coil of effective area 0.05 m2 is kept perpendicular to a magnetic field 5×10-5T. When the plane of the coil is rotated by 90° around any of its coplanar axis in 0.1 s, the emf induced in the coil will be            [2019]

  • 0.02 V

     

  • 2 V

     

  • 0.2 V

     

  • 2×10-3V

     

(1)

Here N=800, A=0.05 m2, Δt=0.1 s

B=5×10-5T

Induced emf, ε=-ΔϕΔt=-(ϕf-ϕi)Δt

ϕi=N(B·A)=800×5×10-5×0.05×cos0°=2×10-3Tm2

ϕf=0     ε=-(0-2×10-3)0.1=2×10-2V=0.02 V



Q 3 :    

A uniform magnetic field is restricted within a region of radius r. The magnetic field changes with time at a rate dBdt. Loop 1 of radius R>r encloses the region r and loop 2 of radius R is outside the region of magnetic field as shown in the figure. Then the e.m.f. generated is              [2016]


 

  • zero in loop 1 and zero in loop 2

     

  • -dBdtπr2 in loop 1 and -dBdtπr2 in loop 2

     

  • -dBdtπR2 in loop 1 and zero in loop 2

     

  • -dBdtπr2 in loop 1 and zero in loop 2

     

(4)

Emf generated in loop 1,

ε1=-dϕdt=-ddt(B·A)=-ddt(BA)=-A×dBdt

ε1=-(πr2dBdt)  (A=πr2 because dBdt is restricted up to radius r.)

Emf generated in loop 2, ε2=-ddt(BA)=-ddt(0×A)=0