Q 1 :    

A cycle wheel of radius 0.5 m is rotated with constant angular velocity of 10 rad/s in a region of magnetic field of 0.1 T which is perpendicular to the plane of the wheel. The EMF generated between its centre and the rim is            [2019]

  • 0.25 V

     

  • 0.125 V

     

  • 0.5 V

     

  • zero

     

(2)

Here, B=0.1 T, r=0.5 m, ω=10 rad/s

So, the emf generated between its centre and rim is,

ε=12Bωr2=12×0.1×10×(0.5)2=0.125 V



Q 2 :    

A conducting square frame of side 'a' and a long straight wire carrying current I are located in the same plane as shown in the figure. The frame moves to the right with a constant velocity 'V'. The emf induced in the frame will be proportional to           [2015]

[IMAGE 247]
 

  • 1(2x+a)2

     

  • 1(2x-a)(2x+a)

     

  • 1x2

     

  • 1(2x-a)2

     

(2)

[IMAGE 248]

Here, PQ=RS=PR=QS=a

Emf induced in the frame, ε=B1(PQ)V-B2(RS)V

=μ0I2π(x-a/2)aV-μ0I2π(x+a/2)aV

=μ0I2π[2(2x-a)-2(2x+a)]aV

=μ0I2π×2[2a(2x-a)(2x+a)]aV

   ε1(2x-a)(2x+a)



Q 3 :    

A thin semicircular conducting ring (PQR) of radius r is falling with its plane vertical in a horizontal magnetic field B, as shown in the figure. The potential difference developed across the ring when its speed is v, is             [2014]

[IMAGE 249]
 

  • zero

     

  • Bvπr22 and P is at higher potential

     

  • πrBv and R is at higher potential

     

  • 2rBv and R is at higher potential

     

(4)

Motional emf induced in the semicircular ring PQR is equivalent to the motional emf induced in the imaginary conductor PR.

i.e.,   εPQR=εPR=Bvl=Bv(2r)                                   (l=PR=2r)

Therefore, potential difference developed across the ring is 2rBv with R at higher potential.