Q 1 :    

A particle of mass m is moving around the origin with a constant force F pulling it towards the origin. If Bohr model is used to describe its motion, the radius r of the nth orbit and the particle’s speed v in the orbit depend on n as            [2025]
 

  • rn2/3;  vn1/3

     

  • rn4/3;  vn-1/3

     

  • rn1/3;  vn1/3

     

  • rn1/3;  vn2/3

     

(1)

As force (F) is constant, so

F=mv2r

We can write,  F=m2v2r2mr3=L2mr3  (As, L=mvr)

As force is constant, so L2mr3

Using, L=nh2π, we get n2h24π2=mr3n2r3  or  rn2/3

Also, mvr=nh2π

As rn2/3, so mv(n2/3)nh2π

or   vn1/3



Q 2 :    

A model for quantized motion of an electron in a uniform magnetic field B states that the flux passing through the orbit of the electron is n(h/e) where n is an integer, h is Planck's constant and e is the magnitude of electron’s charge. According to the model, the magnetic moment of an electron in its lowest energy state will be (m is the mass of the electron)             [2025]
 

  • heBπm

     

  • heB2πm

     

  • heπm

     

  • he2πm

     

(4)

Flux, Φ=B×πr2

or  nhe=B×πr2  or  r2=nhBeπ                                  ...(i)

Also, Bve=mv2r  or  mv=Ber                                   ...(ii)

Let magnetic moment of electron in circular orbit of an atom be μ.

       μ=IA=eTA=eω2π(πr2)=evr2                            ...(iii)

where m is the mass of electron and L is angular momentum.  

From eq. (iii),

         μ=evr2=e2mL  ( L=mvr)

or    μ=e2m×mvr=e2m×Ber2  (Using eq (ii))

or    μ=e2m×Be×nhBeπ  (Using eq (i))

   μ=he2πm



Q 3 :    

Some energy levels of a molecule are shown in the figure with their wavelengths of transitions. Then            [2024]


 

  • λ3>λ2,λ1=2λ2

     

  • λ3>λ2,λ1=4λ2

     

  • λ1>λ2,λ2=2λ3

     

  • λ2>λ1,λ2=2λ3

     

(4)

As, ΔE=Ei-Ef and λ=hcΔE

ΔE1=-5E2-(-4E)=3E2

λ1=hcΔE1=2hc3E                                          ...(i)

ΔE2=-2E-(-3E)=-2E+3E=E

λ2=hcΔE2=hcE                                            ...(ii)

ΔE3=-2E-(-4E)=-2E+4E=2E

λ3=hcΔE3=hc2E                                           ...(iii)

From equation (i), (ii) and (iii)

λ2>λ1>λ3  and  λ2=2λ3



Q 4 :    

The ground state energy of hydrogen atom is −13.6 eV. The energy needed to ionize hydrogen atom from its second excited state will be         [2023]

  • 13.6 eV

     

  • 6.8 eV

     

  • 1.51 eV 

     

  • 3.4 eV

     

(3)

The energy of nth state in the hydrogen atom will be En=-13.6eVn2

For n=3;   E3=-13.6eV9=-1.51 eV

So, ionization energy will be, -(-1.51) eV=1.51 eV



Q 5 :    

The angular momentum of an electron moving in an orbit of hydrogen atom is 1.5(hπ). The energy in the same orbit is nearly      [2023]
 

  • -1.5 eV

     

  • -1.6 eV

     

  • -1.3 eV

     

  • -1.4 eV

     

(1)

For angular momentum (L)=1.5hπ=3(h2π)

Hence, n=3

E3=-13.6n2=-13.69=-1.51 eV



Q 6 :    

The radius of innermost orbit of hydrogen atom is 5.3×10-11m. What is the radius of third allowed orbit of hydrogen atom?         [2023]
 

  • 1.59 Å

     

  • 4.77 Å

     

  • 0.53 Å

     

  • 1.06 Å

     

(2)

Given, r1=5.3×10-11m

Radius of nth orbit of Hydrogen atom is, rn=0.53×n2ZÅ

The radius of the third allowed orbit of hydrogen atom is, r3=0.53×(3)21Å

r3=47.7×10-11m;  r3=4.77×10-10m or 4.77 Å



Q 7 :    

Let T1 and T2 be the energy of an electron in the first and second excited states of hydrogen atom, respectively. According to the Bohr's model of an atom, the ratio T1:T2 is   [2022]
 

  • 1 : 4

     

  • 4 : 1

     

  • 4 : 9

     

  • 9 : 4

     

(4)

For 1st excited state, n = 2

For 2nd excited state, n = 3

   T1T2=n22n12=3222=94



Q 8 :    

For which one of the following, Bohr model is not valid?                [2020]

  • Hydrogen atom

     

  • Singly ionised helium atom (He+)

     

  • Deuteron atom

     

  • Singly ionised neon atom (Ne+)

     

(4)

Bohr’s atomic model is valid for single electron species only. A singly ionised neon contains more than one electron. Hence option (4) is correct.

 



Q 9 :    

The total energy of an electron in an atom in an orbit is −3.4 eV. Its kinetic and potential energies are, respectively          [2019]

  • 3.4 eV, 3.4 eV

     

  • −3.4 eV, −3.4 eV

     

  • −3.4 eV, −6.8 eV

     

  • 3.4 eV, −6.8 eV

     

(4)

Total energy of electron in nth orbit, En=-13.6Z2n2eV.

Kinetic energy of electron in nth orbit, K.E.=13.6Z2n2eV

Potential energy of electron in nth orbit, P.E.=-27.2Z2n2eV

Thus, total energy of electron, En=-K.E.=P.E.2

   K.E.=3.4eV                                       [Given En=-3.4eV]

        P.E.=2×(-3.4)=-6.8eV



Q 10 :    

The radius of the first permitted Bohr orbit for the electron, in a hydrogen atom equals 0.51 Å and its ground state energy equals -13.6 eV. If the electron in the hydrogen atom is replaced by muon (μ-) [charge same as electron and mass 207me], the first Bohr radius and ground state energy will be          [2019]
 

  • 0.53×10-13m,-3.6eV

     

  • 25.6×10-13m,-2.8eV

     

  • 2.56×10-13m,-2.8keV

     

  • 2.56×10-13m,-13.6eV

     

(3)

Given, radius of first Bohr orbit for electron in a hydrogen atom,  r=0.51 Å

and its ground state energy, En=-13.6 eV

Charge of muon = charge of electron

Mass of muon = 207×(mass of electron)

Therefore, when electron is replaced by muon, then first Bohr radius, r'1=0.51Å207=2.56×10-13m and ground state energy, 

E'1=-13.6×207=-2815.2 eV=-2.815 keV