Q 51 :    

Let y = y(x) be the solution of the differential equation cos x(loge(cos x))2dy+(sin x3y sinx loge(cos x))dx=0, x(0, π2). If y(π4)=1loge2, then y(π6) is equal to:          [2025]

  • 1loge(4)

     

  • 1loge(3)loge(4)

     

  • 2loge(3)loge(4)

     

  • 1loge(4)loge(3)

     

(2)

We have, cos x(ln(cos x))2dy+(sin x3y (sin x)ln(cos x))dx=0

 cos x(ln(cos x))2dydx3 sin x·ln(cos x)y=sin x

 dydx3 tan xln(cos x)y=tan x(ln(cos x))2

 dydx+3 tan xln(sec x)y=tan x(ln(sec x))2

I.F.=e3 tan xln(sec x)dx=ln(sec x))3

   Solution is y×(ln(sec x))3=tan x(ln(sec x))2(ln(sec x))3dx+C

 y×(ln(sec x))3=12(ln(sec x))2+C

At x=π4, y=-1ln 2

  1ln 2×(ln 2)3=12(ln 2)2+C

 18 ln 2×(ln 2)3=12×14(ln 2)2+C

 18(ln 2)2=18(ln 2)2+C  C=0

  y(ln(sec x))3=12(ln(sec x))2+0

 y=12 ln (sec x)  y=12 ln (cos x) 

  y(π6)=12 ln(cosπ6)=12 ln(32)

=12(12 ln 3ln 2)=1ln 3ln 4



Q 52 :    

If for the solution curve y = f(x) of the differential equation dydx+(tan x)y=2+sec x(1+2 sec x)2, x(π2,π2), f(π3)=310, then f(π4) is equal to:          [2025]

  • 93+310(4+3)

     

  • 3+110(4+3)

     

  • 4214

     

  • 5322

     

(3)

We have, dydx+(tan x)y=2+sec x(1+2 sec x)2

Here, P = tan x and Q=2+sec x(1+2 sec x)2

I.F.=ePdx=etan xdx=elog|sec x|=sec x

   Solution is given by,

y·sec x=(2+sec x)(1+2 sec x)2·sec xdx+c

 y·sec x=2cosx+1(cos x+2)2dx+c

Put cos x=1t21+t2 sin xdx=4t(1+t2)2dt 

  y·sec x=2(1t21+t2)+1(1t21+t2+2)2·2dt(1+t2)+c

 y·sec x=22t2+1+t2(1t2+2+2t2)2·2dt+c

 y·sec x=23t2(t2+3)2dt+c

Put t+3t=u  (13t2)dt=du

  y·sec x=2duu2+c

 y·sec x=2u+c  y·sec x=2t+3/t+c

Now, at x=π3, t=13, y=310

 2310=21/3+33+c  c=0

Hence, y·sec x=2t+3/t  y=2sec x·(t+3/t)

At x=π4, t=21

  f(π4)=12·2(21)(21)2+3

=2(21)622=22622×6+226+22

=12224368=82228=4214



Q 53 :    

Let f:RR be a thrice differentiable odd function satisfying f'(x)0, f''(x)=f(x), f(0)=0, f'(0)=3. Then 9f(loge3) is equal to _________.          [2025]



(36)

Since, f(x) is a thrice differentiable odd function,

f''(x)=f(x)  f'(x)·f''(x)=f'(x)·f(x)

  (f'(x))22=(f(x))22+C  (f'(x))2=(f(x))2+C'

  (f'(x))2=(f(x))2+9          [ f'(0)=3, f(0)=0]

y=f(x)  dydx=f'(x)=(f(x))2+9

=dx  log|y+y2+9|=x+C

 f(0)=0  C=log 3  y+y2+9=3ex

At x = log 3; y = 4

  9f(loge3)=36



Q 54 :    

Let y = y(x) be the solution of the differential equation dydx+2y sec2x=2 sec2x+3 tan x·sec2x such that y(0)=54. Then 12(y(π4)e2) is equal to __________.          [2025]



(21)

We have, dydx+(2 sec2x)y=2 sec2x+3 tan x sec2x

I.F.=e2 sec2xdx=e2 tan x

   Solution of differential equation is given by

y·e2 tan x=2 sec2x·e2 tan xdx+3 tan x sec2x·e2 tan xdx

Put tan x=t  sec2xdx=dt

  ye2 tan x=2e2tdt+3te2tdt

=2e2t2+3[te2t2e2t2dt]

=e2t+32te2t34e2t+c

 ye2 tan x=e2 tan x+32tan xe2 tan x34e2 tan x+c

 y=14+32tan x+ce2 tan x

Now, y(0)=54  54=14+c  c=1

  y=14+32tan x+e2 tan x

 y(π4)=14+32+e2=74+e2

  12(y(π4)e2)=12(74+e2e2)=21



Q 55 :    

Let y = f(x) be the solution of the differential equation dydx+xyx21=x6+4x1x2, – 1 < x < 1 such that f(0) = 0. If 61/21/2f(x)dx=2πα, then α2 is equal to __________.          [2025]



(27)

From given differential equation, we have

I.F.=e122x1x2dx=e12ln(1x2)=1x2

Hence, solution of given D.E. is

y×1x2=(x6+4x)dx=x77+2x2+c

Given, y(0) = 0, then c = 0

  y=x77+2x21x2

Let  I=61212x77+2x21x2dx          ... (i)

 I=61212x77+2x21x2dx          ... (ii)

Adding (i) & (ii), we get

2I=241212x21x2dx=2×24012x21x2dx

Put x=sinθ  dx=cosθdθ

  I=240π6sin2θcosθcosθdθ

=240π6(1cos2θ2)dθ=12[θsin2θ2]0π6

=12(π634)=2π33

On comparing, we get α2=(33)2=27.



Q 56 :    

Let f be a differentiable function such that 2(x+2)2f(x)3(x+2)2=100x(t+2)f(t)dt, x0. Then f(2) is equal to _________.          [2025]



(19)

We have,

2(x+2)2f(x)3(x+2)2=100x(t+2)f(t)dt, x0          ... (i)

On differentiating, we get

4(x+2)f(x)+2(x+2)2f'(x)6(x+2)=10(x+2)f(x)

 2(x+2)2f'(x)6(x+2)f(x)=6(x+2)

 (x+2)f'(x)3f(x)=3

 (x+2)dydx3y=3          [ f'(x)=dydx and f(x)=y]

 dydx=3(1+y)(x+2)  dy3(1+y)=dx(x+2)

Integrating on both sides, we get

dy(1+y)=3dx(x+2)  ln(1+y)=3ln(x+2)+lnC

 (1+y)=C(x+2)3          ... (ii)

Put x = 0 in equation (i), we get

2(2)2f(0)3(2)2=0  f(0)=32

From (ii), 1+32=C(2)3  C=516

  y=516(x+2)31=f(x)

  f(2)=516×641=19



Q 57 :    

Let yy(x) be the solution of the differential equation 2cosxdydx=sin2x4ysinx, x(0,π2). If y(π3)=0, then y'(π4)+y(π4) is equal to _________.          [2025]



(1)

Given 2cosxdydx=sin2x4ysinxx(0,π2)

The simplified is given by  dydx=2 sin x·cos x2 cos x4 sin x2 cos xy

 dydx+2y tan x=sin x

The integrating factor is given by

I.F.=e2 tan xdx=2 sec2x

   The solution is given by

 2y sec2x=2sin xcos2xdx

 y sec2x=tan x·sec xdx

 y sec2x=sec x+c

Since, y(π3)=0  0=2+c  c=2

  y=cosx2cos2x & y'=sinx+4sinx cosx

Here, y(π4)=121 & y'(π4)=12+2

Hence, y'(π4)+y(π4)=12112+2=1.



Q 58 :    

If y = y(x) is the solution of the differential equation 4x2dydx=((sin1(x2))2y)sin1(x2), 2x2, y(2)=π284, then y2(0) is equal to _________.         [2025]



(4)

From the given D.E.

dydx+(sin1x2)4x2y=(sin1x2)34x2

I.F.=esin1x24x2dx=e(sin1x2)22

   ye(sin1x2)22=(sin1x2)34x2e(sin1x2)22dx

 y=(sin1x2)22+ce(sin1x2)22

Now, y(2)=π242+ceπ28

On comparing with y(2)=π284, we get c = 0

  y=(sin1x2)22

Hence, y(0)=2 y2(0)=4



Q 59 :    

Let f:(0,)R be a twice differentiable function. If for some a0, 01f(λx)dλ=af(x), f(1) = 1 and f(16)=18, then 16f'(116) is equal to __________.          [2025]



(112)

We have  01f(λx)dλ=af(x)

  1x0xf(t)dt=af(x)  [Put λx=t  dλ=1xdt]

  0xf(t)dt=axf(x) 

 f(x)=a(xf'(x)+f(x))  (1a)f(x)=axf'(x)

 f'(x)f(x)=(1a)a1x ln f(x)=1aaln x+c          (On integrating)

Now, x = 1, f(1) = 1  c = 0

Again x = 16, f(16)=18  18=(16)1aa -3=44aa  a = 4

Therefore f(x) = x3/4

 f'(x)=34x74

Hence, 16f'(116)=16(34(24)7/4)

                                          = 16 + 96 = 112.