Q 21 :    

Match List I with List II

  List I   List II
(A) Permeability of free space I. [ML2T2]
(B) Magnetic field II. [MT2A1]
(C) Magnetic moment III. [MLT2A2]
(D) Torsional constant IV. [L2A]

 

Choose the correct answer from the options given below :          [2025]

  • (A)-(I), (B)-(IV), (C)-(II), (D)-(III)

     

  • (A)-(II), (B)-(I), (C)-(III), (D)-(IV)

     

  • (A)-(IV), (B)-(III), (C)-(I), (D)-(II)

     

  • (A)-(III), (B)-(II), (C)-(IV), (D)-(I)

     

(4)

B=μ0I2πr

 [μ0]=[B·rI]=[MT2A1×LA]=[MLT2A2]

magnetic field F = qvB

B=[MLT2ATL/T]=[MT2A1]

[M]=[L2A]

τ=Cθ  C=[τθ]=[ML2T2]



Q 22 :    

The energy E and momentum p of a moving body of mass m are related by some equation. Given that c represents the speed of light, identify the correct equation.          [2025]

  • E2=pc2+m2c4

     

  • E2=pc2+m2c2

     

  • E2=p2c2+m2c2

     

  • E2=p2c2+m2c4

     

(4)

We need to check the dimensions only.

[E]=M1L2T2

[Pc]=M1L1T1·L1T1=M1L2T2

[mc2]=M1L2T2

So, E2=p2c2+m2c4 (dimensionally)



Q 23 :    

Match List I with List II

  List I   List II
A Angular Impulse (I) [M0L2T2]
B Latent Heat (II) [ML2T3A1]
C Electrical Resistivity (III) [ML2T1]
D Electromotive Force (IV) [ML3T3A2]

 

Choose the correct answer from the options given below :          [2025]

  • (A)-(III), (B)-(I), (C)-(IV), (D)-(II)

     

  • (A)-(I), (B)-(III), (C)-(IV), (D)-(II)

     

  • (A)-(III), (B)-(I), (C)-(II), (D)-(IV)

     

  • (A)-(II), (B)-(I), (C)-(IV), (D)-(III)

     

(1)

Angular impulse = [ML2T1]

Latent Heat = [M0L2T2]

Electrical Resistivity = [ML3T3A2]

Electromotive Force = [ML2T3A1]



Q 24 :    

The pair of physical quantities not having same dimensions is          [2025]

  • Torque and energy

     

  • Surface tension and impulse

     

  • Angular momentum and Planck's constant

     

  • Pressure and Young's modulus

     

(2)

[Angular momentum] = ML2T1

[Planck's Constant] = ML2T1

[Torque] = ML2T2

[Energy] = ML2T2

[Surface tension] = MT2

[Impulse] = MLT1

[Pressure] = ML1T2

[Young's modulus] = ML1T2



Q 25 :    

The expression given below shows the variation of velocity (v) with time (t), v=At2+BtC+t. The dimension of ABC is :          [2025]

  • [M0L2T3]

     

  • [M0L1T3]

     

  • [M0L1T2]

     

  • [M0L2T2]

     

(1)

v=At2+BtC+t

[v]=[A]t2=[BtC+t]

[A] = LT3

[C] = T

[B] = LT1

[ABC] = L2T3



Q 26 :    

Match List I with List II.

  List I   List II
(A) Young's Modulus (I) ML1T1
(B) Torque (II) ML1T2
(C) Coefficient of Viscosity (III) M1L3T2
(D) Gravitational Constant (IV) ML2T2

 

Choose the correct answer from the options given below :          [2025]

  • (A)-(I), (B)-(III), (C)-(II), (D)-(IV)

     

  • (A)-(II), (B)-(I), (C)-(IV), (D)-(III)

     

  • (A)-(IV), (B)-(II), (C)-(III), (D)-(I)

     

  • (A)-(II), (B)-(IV), (C)-(I), (D)-(III)

     

(4)

(A) [Y]=FA(ll)  MLT2L2=ML1T2

(B) Torque (τ)=r×F=L×MLT2=ML2T2

(C) Coefficient of viscosity  F=ηAdVdt

          [η]=MLT2L2×T=ML1T1

(D) Gravitational constant (G)

          F=GM1M2r2

          [G]=F·r2m1m2=MLT2×L2M2=M1L3T2



Q 27 :    

The equation for real gas is given by (P+aV2)(Vb)=RT, where P, V, T and R are the pressure, volume, temperature and gas constant, respectively. The dimension of ab2 is equivalent to that of :          [2025]

  • Planck's constant

     

  • Compressibility

     

  • Strain

     

  • Energy density

     

(4)

Given, [P+aV2](Vb)=RT

[P]=[aV2]  [a]=[P][V2]

[a]=[P][V2]=[ML1T2][L6]=ML5T2

[b]=[V]=L3

[ab2]=[ML5T2L6]=[ML1T2]

Dimension of energy density.



Q 28 :    

Match List I with List II

  List I   List II
(A) Coefficient of viscosity (I) [ML0T3]
(B) Intensity of wave (II) [ML2T2]
(C) Pressure gradient (III) [M1LT2]
(D) Compressibility (IV) [ML1T1]

 

Choose the correct answer from the options given below :          [2025]

  • (A)-(I), (B)-(IV), (C)-(III), (D)-(II)

     

  • (A)-(IV), (B)-(I), (C)-(II), (D)-(III)

     

  • (A)-(IV), (B)-(II), (C)-(I), (D)-(III)

     

  • (A)-(II), (B)-(III), (C)-(IV), (D)-(I)

     

(2)

ηFlAv[ML1T1] IV
IPA[MT3] I
dPdx[ML2T2] II
K1B[M1LT2] III

 



Q 29 :    

Given a charge q, current I and permeability of vacuum μ0. Which of the following quantity has the dimension of momentum?          [2025]

  • qI/μ0

     

  • qμ0I

     

  • q2μ0I

     

  • qμ0/I

     

(2)

Momentum = mv

r=mvqB

[mv][qBr]  [mv][qμ0I2πrr]

 [mv][qμ0I]



Q 30 :    

If μ0 and ε0 are the permeability and permittivity of free space, respectively. then the dimension of (1μ0ε0) is :          [2025]

  • L/T2

     

  • L2/T2

     

  • T2/L

     

  • T2/L2

     

(2)

C=1μ0ε0

μ0ε01C2[L2T2]

 [1μ0ε0]=L2T2