Q 21 :    

Consider the hyperbola x2a2y2b2=1 having one of its focus at P(–3, 0). If the latus rectum through its other focus subtends a right angle at P and a2b2=α2β, α, βN, then α+β is ___________.          [2025]



(1944)

We have, F1(ae,0)P(3,0)  ae=3

L1L2=2b2a

In F1F2L2,

tan 45°=L2F2F1F2=b2/a2ae

 2ae=b2a

 b2=6a          [ ae = 3]

Also, a2e2=a2+b2

 9=a2+6a          [ ae=3 and b2=6a]

 a2+6a9=0

a=3±32=3(1±2)

Now, a2b2=a2·6a=6a3           [ b2=6a]

                      =6(1352189)

On comparing, we get α = 810 and β = 1134

  α+β=1944.



Q 22 :    

Let the lengths of the transverse and conugate axes of a hyperbola in standard form be 2a and 2b, respectively, and one focus and the corresponding directrix of this hyperbola be (–5, 0) and 5x + 9 = 0, respectively. If the product of the focal distances of a point (α,25) on the hyperbola is p, then 4p is equal to __________.          [2025]



(189)

Given, focus = (–5, 0)

 ae=5 and ae=95

Also, a=3, e=53 and b=4

x29y216=1

Since, hyperbola passes through (α,25), we get

α294(5)16=1

 α2=9(3616)=814

Now, P=e2α2a2=259×8149=1894

  4p=189.



Q 23 :    

Let the circle C touch the line xy + 1 = 0, have the centre on the positive x-axis, and cut off a chord of length 413 along the line –3x + 2y = 1. Let H be the hyperbola x2α2y2β2=1, whose one of the foci is the centre of C and the length of the transverse axis is the diameter of C. Then 2α2+3β2 is equal to __________.          [2025]



(19)

Since, centre of circle lies on positive x-axis and one of the foci of hyperbola x2α2y2β2=1 are same.

   Centre of circle = (α,0)

Since, xy + 1 = 0 is tangent to the circle.

  |α+12|=r          [where 'r' is the radius of circle]

 (α+1)2=2r2          ... (i)

Also, –3x + 2y = 1 is the chord of the circle

  |3α19+4|2+(213)2=r2          [ Length of chord = 413]

  (3α+1)213+413=r2

 9α2+1+6α+413=(α2+1+2α)2

 5α214α3=0          

 α=3                                        [ α>0]

  r=22

Now, αe=3 and 2α=42

  α2e2=9 and α=22

 α2(1+β2α2)=9  8+β2=9  β2=1

  2α2+3β2=2(8)+3×1=16+3=19.



Q 24 :    

Let H1:x2a2y2b2=1 and H2:x2A2+y2B2=1 be two hyperbolas having length of latus rectums 152 and 125 respectively. Let their eccentricities be e1=52 and e2 respectively. If the product of the lengths of their transverse axes is 10010, then 25e22 is equal to __________.          [2025]



(55)

Given, Hyperbola : H1:x2a2y2b2=1 and e1=52 and H2:x2A2+y2B2=1

Using H1, length of latus rectum = 152

 2b2a=152          ... (i)

Since, e1=52  1+b2a2=52  b2a2=32           ... (ii)

Using (i) and (ii), we get a=52 and b=53

Now, for H2, 2A2B=125          ... (iii)

Since, product of transverse axes is 10010, then

      2a·2B=10010

 2×52×2B=10010  B=55

  A=56          [Using (iii)]

Now, eccentricity of H2 is given by

e22=1+A2B2=1+150125=1+3025=5525

 25e22=55.