Q 21 :

Let the product of the focal distances of the point (3,12) on the ellipse x2a2+y2b2=1, (a > b), be 74. Then the absolute difference of the eccentricities of two such ellipse is          [2025]

  • 32223

     

  • 1223

     

  • 32232

     

  • 132

     

(1)

Product of focal distances from point (3,12)

=(a+ex1)(aex1)

 a23e2=74          [ x1=3]

 4a2=7+12e2

Also, (3,12) lies on ellipse x2a2+y2b2=1

 3a2+14b2=1  3a2+14a2(1e2)=1          [ b2=a2(1e2)]

 12(1e2)+1=4a2(1e2)

 1312e2=(7+12e2)(1e2)

 1312e2=7+12e27e212e4

 12e417e2+6=0

 e2=34 or 23  e=32 or 23

   Required difference = |3223|=32223



Q 22 :

The equation of the chord, of the ellipse x225+y216=1, whose mid-point is (3, 1) is :          [2025]

  • 4x + 122y = 134

     

  • 5x + 16y = 31

     

  • 25x + 101y = 176

     

  • 48x + 25y = 169

     

(4)

Given: Ellipse is x225+y216=1 and mid-point is (3, 1).

The equation of chord with given middle point is given by

TS1

 3x25+1y161=925+1161

 3x25+y16=925+116

48x+25y=144+25

 48x+25y=169.

 



Q 23 :

Let the ellipse E1 : x2a2+y2b2=1, a > b and E2 : x2A2+y2B2=1, A < B have same eccentricity 13. Let the product of their lengths of latus rectums be 323, and the distance between the foci of E1 be 4. If E1 and E2 meet at A, B, C and D, then the area of the quadrilateral ABCD equals :          [2025]

  • 66

     

  • 1265

     

  • 2465

     

  • 1865

     

(3)

We have, 2ae=4  2a(13)=4  a=23

b2=a2(1e2)=12(113)=8

Now,  2b2a·2A2B=323

 2·823·2A2B=323  A2=2B

Alao,  A2=B2(1e2)  2B=B2·23  B=3  A2=6

    E1 : x212+y28=1         ... (i)

and E2 : x26+y29=1          ... (ii)

Solving (i) and (ii), we get

A(65,65), B(65,65), C(65,65), D(65,65)

which form a rectangle. 

   Required area 125×265=2465



Q 24 :

If the mid-point of a chord of the ellipse x29+y24=1 is (2,43) and the length of the chord is 2α3, then α is:          [2025]

  • 22

     

  • 26

     

  • 20

     

  • 18

     

(1)

Let AB is a chord and M is the mid-point.

If M(2,43) then equation of AB is

T=S1  xx1a2+yy1b21=x12a2+y12b21

 x29+y4(43)=(2)29+(43)24

 2x9+y3=29+49

 2x+3y=6  y=62x3

Putting in ellipse, we get x29+(62x)29×4=1

 4x2+36+2x2122x=36

 6x2122x=0  6x(x22)=0

 x=0 and x=22

So, y = 2 and y=23

   Length of the chord ==(220)2+(232)2

                                           =8+169=889=2322

So, α=22.



Q 25 :

If αx+βy=109 is the equation of the chord of the ellipse x29+y24=1, whose mid point is (52,12), then α+β is equal to :          [2025]

  • 46

     

  • 58

     

  • 37

     

  • 72

     

(2)

We have, equation of ellipse as, x29+y24=1

Equation of chord with mid-point (52,12) is

xx1a2+yy1b2=x12a2+y12b2

 52(x9)+12(y4)=2536+116

 5x18+y8=109144

 40x + 18y = 109

On comparing with given equation αx+βy=109, we get

α=40 and β=18

  α+β=58.



Q 26 :

Let C be the circle x2+(y1)2=2E1 and E2 be two ellipses whose centres lie at the origin and major axes lie on x-axis and y-axis respectively. Let the straight line x + y = 3 touch the curves C, E1 and E2 at P(x1,y1)Q(x2,y2) and R(x3,y3) respectively. Given that P is the mid-point of the line segment QR and PQ=223, the value of 9(x1y1+x2y2+x3y3) is equal to __________.          [2025]



(46)

(a) Solving the line x + y = 3, and the circle x2+(y1)2=2

Substitute y = 3 – x

x2+(3x1)2=2

 x22x+1=0

 x=1  y=2

So, P=(x1,y1)=(1,2)  x1y1=2

Use mid-point condition

Let Q=(x2,y2)R=(x3,y3).

Since P is the mid-point of QR

 x2+x3=2x1=2, y2+y3=2y1=4

So, we can write : x3=2x2, y3=4y2

(b) Given

PQ=223  PQ2=(x21)2+(y22)2=89

Let's denote : x2=a, y2=b, x3=2a, y3=5b

(a1)2+(b2)2=89

 a22a+1+b24b+4=89

 a2+b22a4b+5=89

 9a2+9b218a36b+37=0

Hence, a=53, b=43

x1y1+x2y2+x3y3=2+ab+(2a)(4b)

9(x1y1+x2y2+x3y3)=9(10+2ab2b4a)

= 90 + 18ab – 18b – 36a = 46.



Q 27 :

Let E1 : x29+y24=1 be an ellipse. Ellipse Ei's are constructed such that their centres and eccentricities are same as that of E1, and the length of minor axis of Ei is the length of major axis of Ei+1(i1). If Ai is the area of the ellipse Ei, then 5π(i=1Ai), is equal to __________.          [2025]



(54)

Given, E1 : x29+y24=1  e=1b2a2=53

As length of minor axis of Ei is the length of major axis of Ei+1.

E2 : x2a2+y24=1  e=1a242=53          [ Eccentricities are same]

 a=43      E2 : x2169+y24=1

Now, E3 : x2169+y2b2=1  e=1b2a2=1b2169=53

 b2=6481      E3 : x2169+y26481=1

Now, A1=πab=π×3×2=6π,

A2=π×43×2=83π

and A3=π×43×89=3227π

  i=1Ai=6π+83π+3227π+...

                         =6π149=54π5          [ S=a1r]

So, 5πi=1Ai=5π×54π5=54.



Q 28 :

In a group of 100 persons, 75 speak English and 40 speak Hindi. Each person speaks at least one of the two languages. If the number of persons who speak only English is α and the number of persons who speak only Hindi is β, then the eccentricity of the ellipse 25(β2x2+α2y2)=α2β2 is         [2023]

  • 11712

     

  • 11912

     

  • 12912

     

  • 31512

     

(2)

Let γ be the number of persons who speak both English and Hindi.

According to the question, we have  

          α+β+γ=100  (i)

          α+γ=75  (ii)

and    β+γ=40  (iii)

Solving (i), (ii) and (iii), we get  

     α=60, β=25 and γ=15

So, equation of the given ellipse becomes,  

       25(252x2+602y2)=602×252

x2(60/5)2+y2(25/5)2=1x2122+y252=1

So, eccentricity of ellipse =1-b2a2=1-52122=11912



Q 29 :

Let the ellipse E:x2+9y2=9 intersect the positive x- and y-axes at the points A and B respectively. Let the major axis of E be a diameter of the circle C. Let the line passing through A and B meet the circle C at the point P. If the area of the triangle with vertices A, P and the origin O is mn, where m and n are coprime, then m-n is equal to              [2023]

  • 17

     

  • 15

     

  • 18

     

  • 16

     

(1)

We have, E:x29+y21=1

      A(3,0)

      B(0,1)

Equation of line passing through A(3, 0) and B(0, 1) is y-0x-3=1-00-3  x+3y=3               ...(i)

The equation of the circle with radius 3 is x2+y2=9                      ...(ii)

From (i) and (ii), we get
     (3-3y)2+y2=910y2-18y=0y=0,95

   Area of triangle OPA=12×3×95=2710=mn

  m-n=17



Q 30 :

Let a circle of radius 4 be concentric to the ellipse 15x2+19y2=285. Then the common tangents are inclined to the minor axis of the ellipse at the angle       [2023]

  • π12

     

  • π4

     

  • π6

     

  • π3

     

(4)

Given ellipse is x219+y215=1

Equation of tangent to the ellipse is given by

y=mx±19m2+15                             ...(i)

Equation of tangent to the circle x2+y2=16 is given by

y=mx±41+m2                                ...(ii)

From (i) and (ii),  mx±41+m2=mx±19m2+15

  41+m2=19m2+15  16(1+m2)=19m2+15

  16+16m2=19m2+15

  1=3m2  m2=13  m=±13

  tanθ=±13θ=π6 with x-axis

 Common tangent inclined to the minor axis of the ellipse at the angle π3.