Q 81 :

The foot of perpendicular of the point (2, 0, 5) on the line x+12=y-15=z+1-1 is (α,β,γ). Then, which of the following is not correct?            [2023]

  • γα=58

     

  • βγ=-5

     

  • αβγ=415

     

  • αβ=-8

     

(2)

D.r's of line AB<α-2, β, γ-5>

Since AB is perpendicular to  

x+12=y-15=z+1-1

  2(α-2)+5β-1(γ-5)=0

2α+5β-γ+1=0                              ...(i)

Also, α,β,γ lies on the given line.

  α+12=β-15=γ+1-1                    ...(ii)

From (ii), (taking the first two and last two terms)

α=2β-75, γ=-β-45

Putting these in (i), we get 4β-14+25β+β+4+5=0

β=16

which gives α=-43and γ=-56γα =-56-43=58,

βγ=16×-65=-15αβγ=415, αβ=-8, βγ-5



Q 82 :

If the lines x-11=y-22=z+31 and x-a2=y+23=z-31 intersect at the point P, then the distance of the point P from the plane z=a is          [2023]

  • 10

     

  • 28

     

  • 22

     

  • 16

     

(2)

Let two lines L1 and L2 intersect at point P. Then we have the points on line L1 are as =(λ+1,2λ+2,λ-3) and we have the points on line L2 are as =(2μ+a,3μ-2,μ+3)

{L1=x-11=y-22=z+31=λ(say) and L2=x-a2=y+23=z-31=μ(say)}

Now if L1 and L2 intersect, then we must have

        λ-3=μ+3λ=μ+6    ...(i)

and  2λ+2=3μ-22λ=3μ-4    ...(ii)

On solving (i) and (ii), we get μ=16 and λ=22

So, the coordinates of P must be (23,46,19)a=-9

Hence, the distance of the point P from z=-9 is 28.



Q 83 :

The shortest distance between the lines x-12=y+8-7=z-45 and x-12=y-21=z-6-3 is           [2023]

  • 33

     

  • 23

     

  • 53

     

  • 43

     

(4)

Since two lines L1 and L2 are given as

L1x-12=y+8-7=z-45, L2x-12=y-21=z-6-3

For line L1, we have a=i^-8j^+4k^

For line L2, we have b=i^+2j^+6k^

p=2i^-7j^+5k^ and q=2i^+j^-3k^

So, we have p×q=|i^j^k^2-7521-3|

      =i^(21-5)-j^(-6-10)+k^(2+14)

       =16i^+16j^+16k^=16(i^+j^+k^)

The shortest distance, d

=|(a-b)·(p×q)|p×q||

=|[i^(1-1)+j^(-8-2)+k^(4-6)]·16(i^+j^+k^)162+162+162|

=|(-10j^-2k^)·(16i^+16j^+16k^)163|

=|(-10)(16)+(-2)(16)163|=|192163|=|-123|=43



Q 84 :

Let the shortest distance between the lines L:x-5-2=y-λ0=z+λ1,λ0 and L1:x+1=y-1=4-z be 26. If (α,β,γ) lies on L, then which of the following is NOT possible?            [2023]

  • α+2γ=24

     

  • 2α+γ=7

     

  • α-2γ=19

     

  • 2α-γ=9

     

(1)

Since shortest distance between lines L and L1 is 26.

Here,  L:x-5-2=y-λ0=z+λ1,λ0

and  L1:x+11=y-11=z-4-1

Shortest distance between L and L1 is given by

d=||x2-x1y2-y1z2-z1a1b1c1a2b2c2|(b1c2-b2c1)2+(c1a2-c2a1)2+(a1b2-a2b1)2|

  26=||-1-51-λ4+λ-20111-1|(0-1)2+(1-2)2+(2-0)2|

=|-6(-1)-(-λ+1)(2-1)+(λ+4)(-2)1+1+4|

=|6+λ-1-2λ-86|=|-λ-36|

-3-λ6=±26 -3-λ6=26 and -3-λ6=-26

-3-λ=12  λ=-15 and -3-λ=-12  λ=9

Since λ0, therefore λ=9

Now, from line L,x-5-2=y-λ0=z+λ1=r (say)

x=-2r+5, y=0+λ, z=r-λ

x=-2r+5, y=9, z=r-9

Since (α,β,γ) lies on L, then α=-2r+5, β=9, γ=r-9

Now, α+2γ=-2r+5+2r-18=-13

            2α+γ=-4r+10+r-9=-3r+1, rR

            α-2γ=-2r+5-2r+18=-4r+23, rR

            2α-γ=-4r+10-r+9=-5r+19, rR

Hence, α+2γ=24 is not possible.



Q 85 :

If the lines x-12=2-y-3=z-3α and x-45=y-12=zβ intersect, then the magnitude of the minimum value of 8αβ is _______ .         [2023]



(18)

Let x-12=y-23=z-3α=λ(say)                     ...(i)

and x-45=y-12=zβ=μ(say)                         ...(ii)

 Any point on line (i) and (ii) are of the forms (2λ+1, 3λ+2, αλ+3) and (5μ+4, 2μ+1, βμ) respectively.

The lines are intersecting.

  2λ+1=5μ+4, 3λ+2=2μ+1, αλ+3=βμ

Solving first two equations, we get λ=-1 and μ=-1

From third equation, we have

-α+3=-β α-3=β                     ...(iii)

Let y=8αβ=8α(α-3)

        y'=8α+8(α-3)=16α-24

For maxima/minima, 16α-24=0 α=32

Now, y''=16>0

  8αβ is minimum at α=32

So, minimum value of |8αβ|=|8×32×-32|=18



Q 86 :

If the line x=y=z intersects the line xsinA+ysinB+zsinC-18=0=xsin2A+ysin2B+zsin2C-9, where A, B, C are the angles of a triangle ABC, then 80(sinA2sinB2sinC2) is equal to _________ .          [2023]



(5)

Any point on the given line x1=y1=z1=λ  is (λ,λ,λ)

If it intersects the given lines then it must satisfy them.

λ(sinA+sinB+sinC)=2×32                          ...(i)

and λ(sin2A+sin2B+sin2C)=32                      ...(ii)

On dividing equation (ii) by (i), we get

sin2A+sin2B+sin2CsinA+sinB+sinC=124sinAsinBsinC4cosA2cosB2cosC2=12

8[sinA2sinB2sinC2]=12sinA2sinB2sinC2=116

  80(sinA2sinB2sinC2)=80×116=5



Q 87 :

The shortest distance between the lines x-23=y+12=z-62 and x-63=1-y2=z+80 is equal to ______ .          [2023]



(14)

L1:x-23=y+12=z-62

L2:x-63=y-1-2=z+80

Shortest distance=||6-21-(-1)-8-63223-20||||i^j^k^3223-20||

=||42-143223-20|||4i^+6j^-12k^|=4(0+4)-2(0-6)-14(-6-6)42+62+122

=16+12+14×1214=14units.



Q 88 :

If the shortest distance between the lines x+62=y-63=z-64 and x-λ3=y-264=z+265 is 6, then the square of the sum of all possible values of λ is ________ .         [2023]



(384)

Given, shortest distance between the lines

x+62=y-263=z-64

and x-λ3=y-264=z+265 is 6.

Vector along line of shortest distance

=|i^j^k^234345|=i^(15-16)-j^(10-12)+k^(8-9)

=-i^+2j^-k^  (its magnitude is 6)

Now,  16|λ+66-36234345|=±6λ=-26, 106

So, square of sum of these values: (106-26)2=(86)2=384



Q 89 :

If the shortest distance between the line joining the points (1,2,3) and (2,3,4), and the line x-12=y+1-1=z-20 is α, then 28α2 is equal to ______ .        [2023]



(18)

The equation of the line passing through (1,2,3)  and (2,3,4) is

r=(i^+2j^+3k^)+λ(i^+j^+k^)  ( r=a+λp)

and vector form of equation of given second line is

r=(i^-j^+2k^)+μ(2i^-j^)  ( r=b+μq)

Now,  p×q=|i^j^k^1112-10|=i^+2j^-3k^

So, the shortest distance=|(b-a)·(p×q)|p×q||

=|(-3j^-k^)·(i^+2j^-3k^)14|=|-6+314|=314=α=314

Now, 28α2=28×914=18



Q 90 :

Let the co-ordinates of one vertex of ΔABC be A(0,2,α) and the other two vertices lie on the line x+α5=y-12=z+43. For αZ, if the area of ΔABC is 21 sq. units and the line segment BC has length 221 units, then α2 is equal to _________ .          [2023]



(9)