Q 91 :

Let a line l pass through the origin and be perpendicular to the lines, l1:r=(i^-11j^-7k^)+λ(i^+2j^+3k^), λ and l2:r=(-i^+k^)+μ(2i^+2j^+k^), μ. If P is the point of intersection of l and l1, and Q(α,β,γ) is the foot of the perpendicular from P on l2, then 9(α+β+γ) is equal to _______ .         [2023]



(5)

Let l=(0i^+0j^+0k^)+γ(ai^+bj^+ck^)=γ(ai^+bj^+ck^)

Since l is perpendicular to the lines l1 and l2,

ai^+bj^+ck^=|i^j^k^123221|= i^(2-6)-j^(1-6)+k^(2-4)

=-4i^+5j^-2k^                  l=γ(-4i^+5j^-2k^)

P is the point of intersection of l and l1.

      -4γ=1+λ,5γ=-11+2λ,-2γ=-7+3λ

By solving these equations, we get γ=-1.

So, P(4,-5,2)

Let Q(-1+2μ,2μ,1+μ)

Then, PQ·(2i^+2j^+k^)=0

[(2μ-5)i^+(2μ+5)j^+(μ-1)k^]·(2i^+2j^+k^)=0

 4μ-10+4μ+10+μ-1=0 9μ=1μ=19

Hence, 9(α+β+γ)=9(-79+29+109)=5



Q 92 :

Let the plane P contain the line 2x+y-z-3=0=5x-3y+4z+9 and be parallel to the line x+22=3-y-4=z-75. Then the distance of the point A(8,-1,-19) from the plane P measured parallel to the line x-3=y-54=2-z-12 is equal to _______ .         [2023]



(26)

Equation of the plane passing through the line of intersection of the given planes is

(2x+y-z-3)+λ(5x-3y+4z+9)=0

 x(2+5λ)+y(1-3λ)+z(4λ-1)+9λ-3=0     (i)

The plane is parallel to the line

x+22=3-y-4=z-75    i.e.,  x+22=y-34=z-75

   2(2+5λ)+4(1-3λ)+5(4λ-1)=0

 18λ+3=0 λ=-16

Putting the value λ=-16 in equation (i), we get

           x(2-56)+y(1+36)+z(-46-1)-96-3=0

 7x+9y-10z-27=0

This is the required equation of plane.

Now, the given point is (8,-1,-19) and the equation of parallel line is x-3=y-54=z-212

 Equation of line passing through the given point and parallel to the line is

          x-8-3=y+14=z+1912=k

 x=-3k+8,y=4k-1,z=12k-19

This will satisfy the plane: 7x+9y-10z-27=0

          -21k+56+36k-9-120k+190-27=0

-105k+210=0k=2

  x=2,y=7,z=5

  Required distance =(8-2)2+(-1-7)2+(-19-5)2

        =36+64+576=676=26 units



Q 93 :

Let a line L pass through the point P(2, 3, 1) and be parallel to the line x+3y-2z-2=0=x-y+2z. If the distance of L from the point (5, 3, 8) is α, then 3α2 is equal to _________ .           [2023]



(158)

Let a=i^+3j^-2k^ and b=i^-j^+2k^

a×b=|i^j^k^13-21-12|=4i^-4j^-4k^=4(i^-j^-k^)

Line will be parallel to a×b   n=i^-j^-k^

Equation of the line passing through the point P(2,3,1) and parallel to a×b

  x-21=y-3-1=z-1-1

a1=2i^+3j^+k^, a2=5i^+3j^+8k^ a2-a1=3i^+7k^

(a2-a1)×n=|i^j^k^3071-1-1|=7i^-j^(-3-7)+k^(-3)

          =7i^+10j^-3k^

Now,  α=|(a2-a1)×n|n||=|7i^+10j^-3k^|1+1+1

=49+100+93=1583  3α2=158 units