Q 31 :

If the sum of the second, fourth and sixth terms of a G.P. of positive terms is 21 and the sum of its eighth, tenth and twelfth terms is 15309, then the sum of its first nine terms is :          [2025]

  • 760

     

  • 755

     

  • 750

     

  • 757

     

(4)

We have, ar+ar3+ar5=21, ar7+ar9+ar11=15309

 ar(1+r2+r4)=21          ... (i)

and ar7(1+r2+r4)=15309         ... (ii)

Divide equation (ii) by (i), we get

a.r7ar=1530921  r6=729

 r=3 and a=791

Now, S9=a·(r91)r1

               =791(196831)2

               =7×1968291×2

               =984113=757.



Q 32 :

Let a1,a2,a3, ..... be a G.P. of increasing positive terms. If a1a5=28 and a2+a4=29, then a6 is equal to :          [2025]

  • 812

     

  • 526

     

  • 784

     

  • 628

     

(3)

Here, r > 0 and a1,a2,a3, .....>0 as G.P. has increasing positive terms.

       a1a5=28          (Given)

 a(ar4)=28=a2r4=28          ... (i)

Also, a2+a4=29

 ar+ar3=29

 ar(1+r2)=29          ... (ii)

From (i) and (ii), we get

r2(1+r2)2=28(29)2

841r2=28r4+56r2+28

 28r4785r2+28=0

 (r228)(28r21)=0

 r2=28 or 128

 r=28          [ r128 as G.P. is increasing]

 a=128 and a6=ar5=128×(28)5=784.



Q 33 :

Let <an> be a sequence such that a0=0,a1=12 and 2an+2=5an+13an, n=0,1,2,3,.... Then k=1100ak is equal to .          [2025]

  • 3a99100

     

  • 3a100100

     

  • 3a100+100

     

  • 3a99+100

     

(2)

We have, a0=0, a1=12 and 2an+2=5an+13an

Let 2x2=5x3

 2x25x+3=0   (2x3)(x1)=0

 x=1, 32              an=A(1)n+B(32)n

Put n = 0; 0 = A + B

n=1; 12=A+32B  B=1, A=1

 an=(1)+(32)n

 k=1100ak=k=1100(1)+(32)k

       = 100+(32)((32)1001)(321)

 100+[3((32)1001)]

=3a100100.



Q 34 :

Let the coefficients of three consecutive terms, Tr, Tr+1 and Tr+2 in the binomial expansion of (a+b)12 be in a G.P. and let p be the number of all possible values or r. Let q be the sum of all rational terms in the binomial expansion of (34+43)12. Then p + q is equal to :          [2025]

  • 299

     

  • 287

     

  • 295

     

  • 283

     

(4)

Since, Tr, Tr+1 and Tr+2 are in G.P.

So, Tr+1Tr=Tr+2Tr+1

 Cr12Cr112=Cr+112Cr12  13rr=12rr+1

 12rr2=13r+13r2r  13=0          (not possible)

So, p = 0

Now, (31/4+41/3)12=C012(31/4)12(41/3)0+C1212(31/4)0(41/3)12

33+44=27+256=283         q=283

Thus, p + q = 0 + 283 = 283.