Q 11 :

Let A1,A2,A3 be the three A.P. with the same common difference d and having their first terms as A, A + 1, A + 2, respectively. Let a,b,c be the 7th,9th,17th terms of A1,A2,A3, respectively such that |a712b171c171|+70=0. If a=29, then the sum of first 20 terms of an A.P. whose first term is c-a-b and common difference is d12, is equal to ________ .                 [2023]

 



(495)

Given |a712b171c171|+70=0

|A+6d712(A+1+8d)171A+2+16d171|+70=0

(A+6d)(0)-7[(2A+2+16d)-(A-2-16d)]+1[17(2A+2+16d-A-2-16d)]+70=0

-7(A)+1[17(A)]+70=0

10A+70=0A=-7

A+6d=29-7+6d=296d=36d=6

      c=A+2+16d=-7+2+16(6)=91

      b=A+1+8d=-7+1+8(6)=42

c-a-b=91-29-42=20

S20=202[2×20+19×612]=495



Q 12 :

The 8th common term of the series

S1=3+7+11+15+19+...,

S2=1+6+11+16+21+.... .

is _________ .                       [2023]



(151)

S1=3+7+11+15+19+

a1=3,  d1=4

S2=1+6+11+16+21+

a2=1,  d2=5

First common term, a = 11

Common difference, d=LCM(d1,d2)=LCM(4,5)=20

8th common term of the series

      a8=a+7d=11+7×20=151



Q 13 :

Let a1,a2,....,an be in A.P. If a5=2a7 and a11=18, then 12(1a10+a11+1a11+a12+...+1a17+a18) is equal to _______ .            [2023]



(8)

We have, a1,a2,,an are in A.P.

a5=2a7

a+4d=2(a+6d)a+8d=0  ...(1)

and a11=18a+10d=18  ...(2)

On solving (1) and (2), we get 2d=18d=9a=-72

a10=a+9d=-72+81=9

a18=a+17d=-72+153=81

Now, 12(1a10+a11+1a11+a12++1a17+a18)

=12(a10-a11(a10)2-(a11)2 +a11-a12(a11)2-(a12)2++ a17-a18(a17)2-(a18)2)

=12(a10-a11a+9d-a-10d+a11-a12a+10d-a-11d++a17-a18a+16d-a-17d)

=12(a10-a11+a11-a12++a17-a18-d)

=12(a10-a18-9)=12×(9-81)-9=12×(3-9)-9=8



Q 14 :

Number of 4-digit numbers that are less than or equal to 2800 and either divisible by 3 or by 11, is equal to _________ .            [2023]



(710)

Number divisible by 3,1002,1005,…,2799

Tn=1002+3(n-1)=2799n=600

Number divisible by 11 are 164

Number divisible by 33 are 54

Total number=600+164-54=710



Q 15 :

For x0, the least value of K, for which 41+x+41-x,K2,16x+16-x are three consecutive terms of an A.P., is equal to:             [2024]

  • 4

     

  • 10

     

  • 8

     

  • 16

     

(2)

We have, 41+x+41-x,K2,16x+16-x are in A.P.

2K2=(41+x+41-x)+(16x+16-x)

K=4·4x+44x+42x+142x

          =4(4x+14x)+(42x+142x)  4·2+2                                     [A.M.G.M.]

          =10K10

So, least value of K is 10 

 



Q 16 :

A software company sets up m number of computer systems to finish an assignment in 17 days. If 4 computer systems crashed on the start of the second day, 4 more computer systems crashed on the start of the third day and so on, then it took 8 more days to finish the assignment. The value of m is equal to:                 [2024]

  • 160

     

  • 180

     

  • 150

     

  • 125

     

(3)

Let the work done by each computer =k

   Total work =17 mk

Work done on 1 day by m computers =mk

Work done on day 2 by m-4computers =(m-4)k

Work done on day 3 by m-8 computers =(m-8)k

Work done on day 25 =(m-(24×4))k

                                       =(m-96)k

     mk+(m-4)k++(m-96)k=17mk

25m-(4+8++96)=17m

8m=242(4+96)m=150



Q 17 :

Let Sn denote the sum of the first n terms of an arithmetic progression. If S10=390 and the ratio of the tenth and the fifth terms is 15 : 7, then S15-S5 is equal to:            [2024]

  • 800

     

  • 890

     

  • 790

     

  • 690

     

(3)

We have, S10=390

5(2a+9d)=3902a+9d=78                ...(i)

Also, a10a5=157a+9da+4d=157

7a+63d=15a+60d8a=3d

a=38d                                                                    ...(ii)

From (i) & (ii), we get d=8 and a=3

Now, S15-S5=152[6+112]-52[6+32]=790

 



Q 18 :

The number of common terms in the progressions
4, 9, 14, 19, ........…, up to 25th term and 3, 6, 9, 12, ....…, up to 37th term is:                [2024]

  • 8

     

  • 7

     

  • 5

     

  • 9

     

(2)

4, 9, 14, 19, ... are in A.P. with  d1=5, n1=25

3, 6, 9, 12, ... are in A.P. with d2=3, n2=37

L.C.M. (d1,d2)=15

Common terms = 9, 24, 39, 54, 69, 84, 99

 



Q 19 :

The 20th term from the end of the progression 20,1914,1812,1734,,-12914 is:              [2024]

  • -118

     

  • -100

     

  • -110

     

  • -115

     

(4)

Given, 20,1914,1812,1734,,-12914 is in A.P. with first term (a)=-12914

Common difference (d)=20-1914=80-774=34

20th term from the end =a20=a+(20-1)d

=-12914+19×34=-5174+574=-4604=-115

    a20=-115

 



Q 20 :

In an A.P., the sixth term a6=2. If the product a1a4a5 is the greatest, then the common difference of the A.P. is equal to            [2024]

  • 85

     

  • 58

     

  • 32

     

  • 23

     

(1)

We have, a6=2a+5d=2d=2-a5

Let a1a4a5=λ

λ=a(a+3d)(a+4d)=a(a2+7ad+12d2)=a3+7a2d+12ad2

=a3+7a2(2-a5)+12a(2-a5)2          [d=2-a5]

=a3+145a2-75a3+12a25(4-4a+a2)

=a3+145a2-75a3+4825a-4825a2+1225a3

=225a3+2225a2+4825a=225(a3+11a2+24a)

    dλda=225(3a2+22a+24)

λ to be greatest

     dλda=03a2+22a+24=0a=-6,-43

d2λda2=225(6a+22),For a=-6,d2λda2<0

So, λ is maximum

For a=-43,d2λda2>0,λ is minimum        d=2-(-6)5=85