Topic Question Set


Q 21 :

A person forgets his 4-digit ATM pin code. But he remembers that in the code all the digits are different, the greatest digit is 7 and the sum of the first two digits is equal to the sum of the last two digits.Then the maximum number of trials necessary to obtain the correct code is _____ .          [2023]



(72)

Sum of first two digits

Sum of last two digits = α

Case–I : α = 7

2 × 12 = 24 ways.

2 × 8 ways = 16 ways

2 × 4 ways = 8 ways

Total ways = 24 + 16 + 16 + 8 + 8 = 72

 



Q 22 :

The number of 3-digit numbers, that are divisible by either 2 or 3 but not divisible by 7, is ___________ .           [2023]



(514)

Number of numbers divisible by 2 = 450
Number of numbers divisible by 3 = 300
Number of numbers divisible by 7 = 128
Number of numbers divisible by 2 & 7 = 64
Number of numbers divisible by 3 & 7 = 43
Number of numbers divisible by 2 & 3 = 150
Number of numbers divisible by 2, 3 & 7 = 21

Total numbers = 450 + 300 – 150 – 64 – 43 + 21 = 514

 



Q 23 :

The number of words, with or without meaning, that can be formed using all the letters of the word ASSASSINATION so that the vowels occur together, is __________ .    [2023]



(50400)

In the word ASSASSINATION, there are 6 vowels A A A I I O and consonants S S S S N N T.

Taking (AAAIIO) as a single unit, we get:

Number of ways to arrange ASSASSINATION such that all vowels occur together

=8!4!2!×6!3!2!=8!×6!4!(2!)23!=50,400



Q 24 :

The total number of six digit numbers, formed using the digits 4, 5, 9 only and divisible by 6, is ________ .          [2023]



(81)

Total number of 6-digit numbers formed by the digits 4, 5, 9 and divisible by 6 is when all the digits are same.

4444446!6!=1

Taking two digits (4, 5), 5554445!3!2!=10

For (4, 9), 9994445!3!2!=10

Taking three digits: 4594445!3!=20

5595545!4!=5,  9599945!4!=5

9594545!2!2!=30

Total number=20+5+5+30+10+10+1=81



Q 25 :

The number of 9 digit numbers, that can be formed using all the digits of the number 123412341 so that the even digits occupy only even places, is __________ .    [2023]



(60)

Even numbers are 2, 4, 2, 4 

Odd numbers are  1, 3, 1, 3, 1

O¯E¯O¯E¯O¯E¯O¯ E¯O¯

Even places can be filled with even numbers in 4!2!2! ways.

Similarly, odd places can be filled in 5!2!3! ways.

Required number of ways =4!2!2!×5!2!3!=60



Q 26 :

Let x and y be distinct integers where 1x25 and 1y25.Then, the number of ways of choosing x and y, such that x+y is divisible by 5, is _________ .     [2023]



(120)

Let x+y=5λ

Possible cases are

xyNumber of ways5λ5λ205λ+15λ+4255λ+25λ+3255λ+35λ+2255λ+45λ+125

Total number of ways =20+25+25+25+25=120



Q 27 :

Five digit numbers are formed using the digits 1, 2, 3, 5, 7 with repetitions and are written in descending order with serial numbers. For example, the number 77777 has serial number 1. Then the serial number of 35337 is _______ .             [2023]



(1436)

Number of 5-digit numbers starting with digit 1 =5×5×5×5=625

No. of 5-digit numbers starting with digit 2 =54=625

No. of 5-digit numbers starting with 31 =5×5×5=125

No. of 5-digit numbers starting with 32 =5×5×5=125

No. of 5-digit numbers starting with 33 =5×5×5=125

No. of 5-digit numbers starting with 351 =5×5=25

No. of 5-digit numbers starting with 352 =5×5=25

No. of 5-digit numbers starting with 3531 =5

No. of 5-digit numbers starting with 3532 =5

Before 35337, there will be 4 numbers, so the rank of 35337 will be 1690.

So, in descending order serial number will be, 3125-1690+1=1436



Q 28 :

The total number of 4-digit numbers whose greatest common divisor with 54 is 2, is _________ .          [2023]



(3000)

The total 4-digit numbers is N

=9×10×10×10=9000

The number N should be divisible by 2 but not by 3.

N=(Number divisible by 2)-(Number divisible by 6)

=90002-90006=4500-1500=3000



Q 29 :

Number of 4-digit numbers (the repetition of digits is allowed) which are made using the digits 1, 2, 3 and 5, and are divisible by 15, is equal to ______ .          [2023]



(21)

We have to make 4-digit numbers using the digits 1,2,3, and 5.

The unit digit of the 4-digit number will be 5.

x y z 5

Now, the sum (x+y+z) should be of the form (3λ+1).

Therefore, the possible cases are:

(x,y,z)=(1,1,5),(1,1,2),(2,2,3),(2,3,5),(3,3,1),(5,5,3)

So, total arrangements are:

For (1,1,5)3!2!=3  ;  For (1,1,2)3!2!=3

For (2,2,3)3!2!=3  ;  For (2,3,5)3!=6

For (3,3,1)3!2!=3  ;  For (5,5,3)3!2!=3

So, total number of arrangements =3+3+3+6+3+3=21



Q 30 :

Let n=0n3((2n)!)+(2n-1)(n!)(n!)((2n)!)=ae+be+c, where a,b,c and e=n=01n!. Then a2-b+c is equal to ________ .            [2023]



(26)

We have, n=0n3(2n!)+(2n-1)(n!)(n!)((2n)!)=ae+be+c

n=01(n-3)!+n=03(n-2)!+n=01(n-1)!+n=01(2n-1)!-n=01(2n)!=ae+be+c

e+3e+e+12(e-1e)-12(e+1e)=ae+be+c

5e-1e=ae+be+c

Comparing, we get, a=5, b=-1, c=0

a2-b+c=25+1=26