Topic Question Set


Q 1 :

If C3:C3=10:1,n2n then the ratio (n2+3n):(n2-3n+4) is                           [2023]

  • 27 : 11

     

  • 65 : 37 

     

  • 2 : 1 

     

  • 35 : 16

     

(3)

We have, C32n:nC3=10:1 

(2n!(2n-3)!3!)n!3!(n-3)!=101

2n(2n-1)(2n-2)6×6n(n-1)(n-2)=101 

4(2n-1)(n-2)=10 8n-4=10n-20 

16=2nn=8          (n2+3n):(n2-3n+4)=(64+24):(64-24+4) 

= 88:44=2:1



Q 2 :

Let the number of elements in sets A and B be five and two respectively. Then the number of subsets of A x B each having at least 3 and at most 6 elements is        [2023]

  • 752

     

  • 792

     

  • 772 

     

  • 782

     

(2)

Given, n(A)=5,n(B)=2 

    n(A×B)=10 

    Required number of subsets=10C3+10C4+10C5+10C6

= 120+210+252+210 = 792



Q 3 :

The number of triplets (x, y, z), where x, y, z are distinct non negative integers satisfying x + y + z = 15, is             [2023]

  • 80

     

  • 114 

     

  • 92

     

  • 136

     

(2)

x+y+z=15 

Total number of solutions=15+3-1C3-1=136  ...(1) 

Let x=yz;   2x+z=15z=15-2x 

   z{0,1,2,,7}-{5}      There are 7 solutions. 

 There are 21 solutions in which exactly two of x,y,z are equal.  ...(2) 

 There is one solution in which x=y=z.  ...(3) 

Required answer=136-21-1=114



Q 4 :

k=06C351-k is equal to                             [2023]

  • C3-51C345

     

  • C4-52C445

     

  • C3-52C345

     

  • C4-51C445

     

(2)

k=06C351-k =C351+C350+C349+C348+C347+C346+C345 

As we have,   Crn+Cr-1n=Crn+1Cr-1n=Crn+1-Crn 

So,  C351=C452-C451,C350=C451-C450 and C345=C446-C445

k=06C351-k=C452-C451+C451-C450++C447-C446+C446-C445 

=C452-C445



Q 5 :

The number of ways of giving 20 distinct oranges to 3 children such that each child gets at least one orange is __________ .             [2023]



(3483638676)

Required number of ways

=C03320-C13220+C23120

=320-3×220+3

=3[319-220+1]

= 3483638676



Q 6 :

The number of 4-letter words, with or without meaning, each consisting of 2 vowels and 2 consonants, which can be formed from the letters of the word UNIVERSE without repetition is ___________ .              [2023]



(432)

Vowels are U,I,E,E and consonants N,V,R,S

So, there are 4 vowels and 4 consonants.

When both vowels are different

  Number of ways=C23×C24×4!=432



Q 7 :

Some couples participated in a mixed doubles badminton tournament. If the number of matches played, so that no couple played in a match, is 840, then the total numbers of persons, who participated in the tournament, is ___________ .            [2023]



(16)

Let the total number of couples =n.

According to the question, C2n·C2n-2×2=840

  n!2!(n-2)!×(n-2)!2!(n-4)!×2=840

  n(n-1)(n-2)(n-3)2=840n=8

  Total number of players=2×n=2×8=16



Q 8 :

Number of integral solution to the equation x + y + z = 21, where x1, y3, z4, is equal to __________ .           [2023]



(105)

Given, x+y+z=21, x1, y3, z4 

We have, x1, y3, z4 

Let x-1=X, i.e., x=1+X;  y-3=Y, i.e., y=Y+3;  z-4=Z, i.e., z=Z+4                 x+y+z=21 

1+X+Y+3+Z+4=21 

   X+Y+Z=21-8=13 

  Number of non-negative integral solutions 

=C3-113+3-1=C215=15×142=105



Q 9 :

A boy needs to select five courses from 12 available courses, out of which 5 courses are language courses. If he can choose at most two language courses, then the number of ways he can choose five courses is _______ .              [2023]



(546)

5 language courses 

7 non-language courses 

He can select: 

(i)  0 language courses and 5 non-language courses in C05×C57=21 ways 

(ii)  1 language course and 4 non-language courses in C15×C47=175 ways 

(iii)  2 language courses and 3 non-language courses in C25×C37=350 ways

Required number of ways=21+175+350=546 ways



Q 10 :

Let S = {1, 2, 3, 5, 7, 10, 11}. The number of non-empty subsets of S that have the sum of all elements a multiple of 3, is ________ .         [2023]



(43)

Elements of the type 3k=3 

Elements of type 3k+1=1,7,10

Elements of type 3k+2=2,5,11 

Subsets containing one element S1=1 

Subsets containing two elements S2=C13×C13=9 

Subsets containing three elements S3=C13×C13+1+1=11

Subsets containing four elements S4=C33+C33+C23×C23=11 

Subsets containing five elements S5=C23+C23+C23×1=9 

Subsets containing six elements S6=1

Subsets containing seven elements S7=1 

Required sum=1+9+11+11+9+1+1=43