Q 21 :

Let Dk=|12k2k-1nn2+n+2n2nn2+nn2+n+2|If k=1nDk=96, then n is equal to _________ .               [2023]



(6)

Given,  Dk=|12k2k-1nn2+n+2n2nn2+nn2+n+2|

   k=1nDk=|k=1n1k=1n2kk=1n(2k-1)nn2+n+2n2nn2+nn2+n+2|

Apply k=1n2k=2n(n+1)2=n(n+1)

k=1n(2k-1)=k=1n2k-k=1n1=2n(n+1)2-n=n2+n-n=n2

   k=1nDk=|nn2+nn2nn2+n+2n2nn2+nn2+n+2|

Apply R2R2-R1 and R3R3-R1

  |nn2+nn202000n+2|=96

n(2(n+2)-0)=96n(n+2)=48

n2+2n-48=0n2+8n-6n-48=0n(n+8)-6(n+8)=0(n-6)(n+8)=0

n=6,-8

Since n cannot be negative,   n=6