Q 1 :    

Let the position vector of the vertices A, B and C of a triangle be 2i^+2j^+k^, i^+2j^+2k^ and 2i^+j^+2k^ respectively. Let l1, l2 and l3 be the lengths of perpendiculars drawn from the orthocenter of the triangle on the sides AB, BC and CA respectively, then l12+l22+l32 equals :          [2024]

  • 15

     

  • 13

     

  • 12

     

  • 14

     

(3)

Position vector of A=2i^+2j^+k^

Position vector of B=i^+2j^+2k^

Position vector of C=2i^+j^+2k^

Coordinates of A, B and C of ABC are A(2, 2, 1), B(1, 2, 2) and C(2, 1, 2)

AB=(12)2+(22)2+(21)2=2 units

BC=(21)2+(12)2+(22)2=2 units

AC=(22)2+(12)2+(21)2=2 units

ABC is an equilateral triangle with side 2 units. In an equilateral triangle, orthocenter and centroid will be same.

Centroid, G(x,y,z)G(2+1+23,2+2+13,2+2+13)G(53,53,53)

Mid-point of AB is D(32,2,32)

l1=(53-32)2+(532)2+(5332)2=136+19+136=16

    l1=l2=l3=16

  l12+l22+l32=3×16=12



Q 2 :    

The position vectors of the vertices A, B and C of a triangle are 2i^3j^+3k^, 2i^+2j^+3k^ and i^+j^+3k^ respectively. Let l denotes the length of the angle bisector AD of BAC where D is on the line segment BC, then 2l2 equals :          [2024]

  • 50

     

  • 49

     

  • 45

     

  • 42

     

(3)

In ,ABC

Position vector of A=2i^3j^+3k^

Position vector of B=2i^+2j^+3k^

Position vector of C=i^+j^+3k^

Coordinates of the triangle ABC are A(2, –3, 3), B(2, 2, 3) and C(–1, 1, 3).

AD is the angle bisector of BAC.

 BD:DC=AB:ACD is the mid-point of the side BC.

Let the coordinates of D be (x, y, z).

By mid-point formula, x=212, y=2+12, z=3+32

 x=12, y=32 and z=3

So, AD2=(212)2+(332)2+(33)2=904

 l2=AD2=904                 2l2=2×904=45



Q 3 :    

Let O be the origin and the position vectors of A and B be 2i^+2j^+k^ and 2i^+4j^+4k^ respectively. If the internal bisector of AOB meets the line AB at C, then the length of OC is          [2024]

  • 2331

     

  • 3234

     

  • 2334

     

  • 3231

     

(3)

|OA|=4+4+1=3

|OB|=4+16+16=6

OAOB=ACCB=36=12

C(4+23,4+43,2+43)

  C(2,83,2)

|OC|=4+649+4=1363=2343.



Q 4 :    

Let a, b and c be three non-zero vectors such that b and c are non-collinear. If a+5b is collinear with c, b+6c is collinear with a and a+αb+βc=0, then α+β is equal to          [2024]

  • 35

     

  • –30

     

  • 30

     

  • –25

     

(1)

We have

 a+5b=λc, λR         ... (i)

b+6c=μa, μR  a=b+6cμ

From (i), b+6cμ+5b=λc  b(1μ+5)=c(λ6μ)

Since, b and c are non-collinear.

  1μ=5 and λ=6μ   μ=15 and λ=30

  From (i), a+5bλc=0

 a+5b+30c =0 α=5 and β=30         α+β=35



Q 5 :    

Let the position vectors of three vertices of a triangle be 4p+q3r5p+q+2r and 2pq+2r. If the position vectors of the orthocenter and the circumcenter of the triangle are  p+q+r4 and αp+βq+γr respectively, then α+2β+5γ is equal to:          [2025]

  • 1

     

  • 3

     

  • 6

     

  • 4

     

(2)

Given Orthocenter =p+q+r4

Circumcenter =αp+βq+γr

Centroid =(4p+q3r)+(5p+q+2r)+(2pq+2r)3

                     =p+q+r3

Since, centroid divides the line joining orthocenter and the circumcenter in the ratio of 2 : 1,

So, 2·(αp+βq+γr)+1·(p+q+r4)=3·(p+q+r3)

 8(αp+βq+γr)=3(p+q+r)

 8αp+8βq+8γr=3p+3q+3r
On comparing, we get

α=38, β=38 and γ=38

  α+2β+5γ=38+2×38+5×38=38+68+158=248=3.



Q 6 :    

If the components of a=αi^+βj^+γk^ along and perpendicular to b=3i^+j^k^ respectively, are 1611(3i^+j^k^) and 111(4i^5j^17k^), then α2+β2+γ2 is equal to :          [2025]

  • 26

     

  • 23

     

  • 18

     

  • 16

     

(1)

Let a1 = Component of a along b and a2 = Component of a perpendicular to b

  a1=1611(3i^+j^k^) and a2=111(4i^5j^17k^)

  a=a1+a2

  a=1611(3i^+j^k^)+111(4i^5j^17k^)

                 =4411i^+1111j^3311k^=4i^+j^3k^

On comparing, we get α=4, β=1, γ=3

Hence, α2+β2+γ2=16+1+9=26.



Q 7 :    

Let the three sides of a triangle ABC be given by the vectors 2i^j^+k^i^3j^5k^ and 3i^4j^4k^. Let G be the centroid of the triangle ABC. Then 6(|AG|2+|BG|2+|CG|2) is equal to __________.          [2025]



(164)

We have in ABCAB+CA=BC

Let PV of A be 0 then AB=BA

 P.V. of B=2i^j^+k^

CA=AC

P.V. of C=i^+3j^+5k^

Now, P.V. of G=A+B+C3=13(i^+2j^+6k^)

Then AG=13(i^+2j^+6k^)

 |AG|2=419

 BG=(132)i^+(23+1)j^+(21)k^

 |BG|2=599

 CG=(13+1)i^+(233)j^+(25)k^

 |CG|2=1469

  6(|AG|2+|BG|2+|CG|2)=6(419+599+1469)=164.