Q 1 :    

If A(1, –1, 2), B(5, 7, –6), C(3, 4, –10) and D(–1, –4, –2) are the vertices of a quadrilateral ABCD, then its area is :          [2024]

  • 247

     

  • 1229

     

  • 487

     

  • 2429

     

(2)

We have, A(1, –1, 2), B(5, 7, –6), C(3, 4, –10) and D(–1, –4, –2)

AC and BD are diagonals of ABCD.

Now, AC=2i^+5j^12k^

and BD=6i^+11j^4k^

Area, of ABCD12||i^j^k^25126114||

=12|112i^64j^8k^|=12×16704

=12×2429=1229.



Q 2 :    

Let a=2i^+ 5j^k^, b=2i^ 2j^+2k^ and c be three vectors such that (c+i^)×(a+b+i^)=a×(c+i^). If a·c=29, then c·(2i^+j^+k^) is equal to :          [2024]

  • 15

     

  • 5

     

  • 12

     

  • 10

     

(2)

Consider a+b+i^

=2i^+5j^k^+2i^2j^+2k^+i^

=5i^+3j^+k^

Now, (c+i^)×(a+b+i^)=a×(c+i^)

 (c+i^)×(5i^+3j^+k^)=(2i^+5j^k^)×(c+i^)

 (c+i^)×(5i^+3j^+k^+2i^+5j^k^)=0

 (c+i^)×(7i^+8j^)=0

 c+i^=λ(7i^+8j^)

a·c+a·i^=λa·(7i^+8j^)

 29+2=λ(14+40)  λ=12

   c+i^=72i^4j^

 c=92i^4j^

  c·(2i^+j^+k^)=94=5.



Q 3 :    

Consider three vectors a,b,c. Let |a|=2, |b|=3 and a=b×c. If α[0,π3] is the angle between the vectors b and c, then the minimum value of 27|ca|2 is equal to :          [2024]

  • 105

     

  • 124

     

  • 121

     

  • 110

     

(2)

Consider |ca|2

    =|c|2+|a|22a·c=|c|2+42(b×c)·c=|c|2+40

  |ca|2=|c|2+4          ... (i)

Now, |a|=|b×c|  2=|b||c|sin α,   α[0,π3]

    =3|c| sin α

 |c|=23cosec α

 |c|min=23×23              (  α[0,π3])

 27|ca|min2=27(1627+4)

    =16 + 108 = 124.



Q 4 :    

If A(3, 1, –1), B(53,73,13), C(2, 2, 1) and D(103,23,13) are the vertices of a quadrilateral ABCD, then its area is          [2024]

  • 523

     

  • 423

     

  • 22

     

  • 223

     

(2)

Gicen, A(3, 1, –1), B(53,73,13)C(2, 2, 1) and D(103,23,13) are vertices of quadrilateral ABCD

AC=(23)i^+(21)j^+(1+1)k^=i^+j^+2k^

BD=(10353)i^+(2373)j^+(1313)k^=53i^53j^23k^

Area of quadrilateral ABCD12|AC×BD|

=12||i^j^k^1125/35/32/3||=12|i^(83)j^(83)+k^(0)|

=12649+649=423sq. units.



Q 5 :    

Let a=2i^+j^k^, b=((a×(i^+j^))×i^)×i^. Then the square of the projection of a on b is :           [2024]

  • 13

     

  • 15

     

  • 23

     

  • 2

     

(4)

We have, a=2i^+j^k^

and b=((a×(i^+j^))×i^)×i^

  =(|i^j^k^211110|×i^)×i^=((i^j^+k^)×i^)

   =|i^j^k^111100|×i^=(j^+k^)×i^=k^+j^

 b=j^k^

So, projection of a on ba·b|b|=22=2

  Square of projection = 2.



Q 6 :    

Let a=6i^+j^k^ and b=i^+j^. If c is a vector such that |c|6,a·c=6|c|,|ca|=22 and the angle between a×b and c is 60°, then |(a×b)×c| is equal to :          [2024]

  • 323

     

  • 92(66)

     

  • 92(6+6)

     

  • 326

     

(3)

We have, |(a×b)×c|=|a×b||c| sin60°

Now, a×b=|i^j^k^611110|=i^j^+5k^

So, |a×b|=1+1+25=27=33

Also, |c-a|=22        [Given]

 |c|2+|a|22|c·a|=8

 |c|2+3812|c|=8          [  c·a=6|c|]

 |c|212|c|+30=0

 |c|=12+242          [  |c|6]

 |c|=6+6

  |(a×b)×c|=27×(6+6)×32=92(6+6).



Q 7 :    

The set of all α, for which the vectors a=αti^+6j^3k^ and b=ti^2j^2αtk^ are inclined at an obtuse angle for all tR, is          [2024]

  • [0, 1)

     

  • (–2, 0]

     

  • (43,0]

     

  • (43,1)

     

(3)

Given, a=αti^+6j^3k^ and b=ti^2j^2αtk^

So, a·b<0 tR      [  a and b are inclined at an obtuse angle]

 αt212+6αt<0 tR  α<0 and D<0

 36α2+48α<0  12α(3α+4)<0

 43<α<0

Also, for α=0, a·b<0  α(43,0].



Q 8 :    

Let a=4i^j^+k^, b=11i^j^+k^ and c be a vector that (a+b)×c=c×(2a+3b). If (2a+3b)·c=1670, then |c|2 is equal to :          [2024]

  • 1600

     

  • 1680

     

  • 1627

     

  • 1609

     

(2)

We have, a=4i^j^+k^ and b=11i^j^+k^

a·b=44+1+1=46, |a|2=18, |b|2=123

(a+b)×c=c×(2a+3b)          ... (i)          [Given]

and (2a+3b)·c=1670          ... (ii)

  (a+b)×c=(2a3b)×c          [From (i)]

 (a+4b)×c=0  c=λ(4ba)

 (2a+3b)·λ(4ba)=1670          [From (ii)]

 λ(5a·b2|a|2+12|b|2)=1670

 λ=16705×462×18+12×123=1

Now, c=4ba=4(11i^j^+k^)(4i^j^+k^)

        =40i^3j^+3k^

  |c|2=1600+9+9=1618.