Q 1 :    

If A(1, –1, 2), B(5, 7, –6), C(3, 4, –10) and D(–1, –4, –2) are the vertices of a quadrilateral ABCD, then its area is :          [2024]

  • 247

     

  • 1229

     

  • 487

     

  • 2429

     

(2)

We have, A(1, –1, 2), B(5, 7, –6), C(3, 4, –10) and D(–1, –4, –2)

AC and BD are diagonals of ABCD.

Now, AC=2i^+5j^12k^

and BD=6i^+11j^4k^

Area, of ABCD12||i^j^k^25126114||

=12|112i^64j^8k^|=12×16704

=12×2429=1229.



Q 2 :    

Let a=2i^+5j^k^, b=2i^2j^+2k^ and c be three vectors such that (c+i^)×(a+b+i^)=a×(c+i^). If a·c=29, then c·(2i^+j^+k^) is equal to :          [2024]

  • 15

     

  • 5

     

  • 12

     

  • 10

     

(2)

Consider a+b+i^

=2i^+5j^k^+2i^2j^+2k^+i^

=5i^+3j^+k^

Now, (c+i^)×(a+b+i^)=a×(c+i^)

 (c+i^)×(5i^+3j^+k^)=(2i^+5j^k^)×(c+i^)

 (c+i^)×(5i^+3j^+k^+2i^+5j^k^)=0

 (c+i^)×(7i^+8j^)=0

 c+i^=λ(7i^+8j^)

a·c+a·i^=λa·(7i^+8j^)

 29+2=λ(14+40)  λ=12

   c+i^=72i^4j^

 c=92i^4j^

  c·(2i^+j^+k^)=94=5.



Q 3 :    

Consider three vectors a,b,c. Let |a|=2, |b|=3 and a=b×c. If α[0,π3] is the angle between the vectors b and c, then the minimum value of 27|ca|2 is equal to :          [2024]

  • 105

     

  • 124

     

  • 121

     

  • 110

     

(2)

Consider |ca|2

    =|c|2+|a|22a·c=|c|2+42(b×c)·c=|c|2+40

  |ca|2=|c|2+4          ... (i)

Now, |a|=|b×c|  2=|b||c|sin α,   α[0,π3]

    =3|c| sin α

 |c|=23cosec α

 |c|min=23×23              (  α[0,π3])

 27|ca|min2=27(1627+4)

    =16 + 108 = 124.



Q 4 :    

If A(3, 1, –1), B(53,73,13), C(2, 2, 1) and D(103,23,13) are the vertices of a quadrilateral ABCD, then its area is          [2024]

  • 523

     

  • 423

     

  • 22

     

  • 223

     

(2)

Gicen, A(3, 1, –1), B(53,73,13)C(2, 2, 1) and D(103,23,13) are vertices of quadrilateral ABCD

AC=(23)i^+(21)j^+(1+1)k^=i^+j^+2k^

BD=(10353)i^+(2373)j^+(1313)k^=53i^53j^23k^

Area of quadrilateral ABCD12|AC×BD|

=12||i^j^k^1125/35/32/3||=12|i^(83)j^(83)+k^(0)|

=12649+649=423sq. units.



Q 5 :    

Let a=2i^+j^k^, b=((a×(i^+j^))×i^)×i^. Then the square of the projection of a on b is :           [2024]

  • 13

     

  • 15

     

  • 23

     

  • 2

     

(4)

We have, a=2i^+j^k^

and b=((a×(i^+j^))×i^)×i^

  =(|i^j^k^211110|×i^)×i^=((i^j^+k^)×i^)

   =|i^j^k^111100|×i^=(j^+k^)×i^=k^+j^

 b=j^k^

So, projection of a on ba·b|b|=22=2

  Square of projection = 2.



Q 6 :    

Let a=6i^+j^k^ and b=i^+j^. If c is a vector such that |c|6,a·c=6|c|,|ca|=22 and the angle between a×b and c is 60°, then |(a×b)×c| is equal to :          [2024]

  • 323

     

  • 92(66)

     

  • 92(6+6)

     

  • 326

     

(3)

We have, |(a×b)×c|=|a×b||c| sin60°

Now, a×b=|i^j^k^611110|=i^j^+5k^

So, |a×b|=1+1+25=27=33

Also, |c-a|=22        [Given]

 |c|2+|a|22|c·a|=8

 |c|2+3812|c|=8          [  c·a=6|c|]

 |c|212|c|+30=0

 |c|=12+242          [  |c|6]

 |c|=6+6

  |(a×b)×c|=27×(6+6)×32=92(6+6).



Q 7 :    

The set of all α, for which the vectors a=αti^+6j^3k^ and b=ti^2j^2αtk^ are inclined at an obtuse angle for all tR, is          [2024]

  • [0, 1)

     

  • (–2, 0]

     

  • (43,0]

     

  • (43,1)

     

(3)

Given, a=αti^+6j^3k^ and b=ti^2j^2αtk^

So, a·b<0 tR      [  a and b are inclined at an obtuse angle]

 αt212+6αt<0 tR  α<0 and D<0

 36α2+48α<0  12α(3α+4)<0

 43<α<0

Also, for α=0, a·b<0  α(43,0].



Q 8 :    

Let a=4i^j^+k^, b=11i^j^+k^ and c be a vector that (a+b)×c=c×(2a+3b). If (2a+3b)·c=1670, then |c|2 is equal to :          [2024]

  • 1600

     

  • 1618

     

  • 1627

     

  • 1609

     

(2)

We have, a=4i^j^+k^ and b=11i^j^+k^

a·b=44+1+1=46, |a|2=18, |b|2=123

(a+b)×c=c×(2a+3b)          ... (i)          [Given]

and (2a+3b)·c=1670          ... (ii)

  (a+b)×c=(2a3b)×c          [From (i)]

 (a+4b)×c=0  c=λ(4ba)

 (2a+3b)·λ(4ba)=1670          [From (ii)]

 λ(5a·b2|a|2+12|b|2)=1670

 λ=16705×462×18+12×123=1

Now, c=4ba=4(11i^j^+k^)(4i^j^+k^)

        =40i^3j^+3k^

  |c|2=1600+9+9=1618.



Q 9 :    

Let three vectors a=αi^+4j^+2k^, b=5i^+3j^+4k^, c=xi^+yj^+zk^ form a triangle such that c=ab and the area of the triangle is 56. If α is a positive real number, then |c|2 is equal to:          [2024]

  • 14

     

  • 16

     

  • 12

     

  • 10

     

(1)

We have, c=ab

  c=(α5)i^+j^2k^

Let ABC be the given triangle.

Area of ABC=12|a×b|=12||i^j^k^α42534||

  12|10i^(4α10)j^+(3α20)k^|=56          [Given]

=100+(4α10)2+(3α20)2=600

  25α2200α=0  α=8      [α.]

  |c|2=9+1+4=14.



Q 10 :    

Let OA=2a and OB=6a+5b and OC=3b where O is the origin. If the area of the parallelogram with adjacent sides OA and OC is 15 sq. units, then the area (in sq. units) of the quadrilateral OABC is equal to:          [2024]

  • 35

     

  • 40

     

  • 38

     

  • 32

     

(1)

We have, |OA×OC|=15

  |2a×3b|=15    |a×b|=52          ... (i)

Area of quadrilateral OABC=12|OB×AC|

=12|(6a+5b)×(3b2a)|=12|18(a×b)10(b×a)|

=12|18(a×b)+10(a×b)|=14|a×b|

=14×52  [using (i)]

= 35 sq. units.