Q 1 :    

Let a unit vector which makes an angle of 60° with 2i^+2j^k^ and an angle of 45° with i^k^ be C. Then C+(12i^+132j^23k^) is          [2024]

  • 23i^+132j^12k^

     

  • 23i^+23j^+(12+223)k^

     

  • 23i^12k^

     

  • (13+12)i^+(13132)j^+(13+23)k^

     

(3)

Let C=ai^+bj^+ck^, then we have |C|=1

 a2+b2+c2=1          ... (i)

Angle between C and  2i^+2j^k^ is 60°.

  (ai^+bj^+ck^)·(2i^+2j^k^)=(4+4+1) cos 60°          (  a2+b2+c2=1)

 2a+2bc=32          ... (ii)

Angle between C and i^k^ is 45°.

  (ai^+bj^+ck^)·(i^k^)=1+0+1 cos 45°

 ac=1          ... (iii)

Solving (i), (ii) and (iii), we get a+2b=12 and a2+b2+(a1)2=1

 2a22a+b2=0  2a22a+(2a14)2=0

 32a232a+4a24a+1=0  36a236a+1=0

 a=36±(36)24(36)2×36=12±23

   b=12a4  b=112234=132

   c=12±23

   C+(12i^+132j^23k^)=23i^12k^

 



Q 2 :    

For λ > 0, let θ be the angle between the vectors a=i^+λj^3k^ and b=3i^j^+2k^. If the vectors a+b and ab are mutually perpendicular, then the value of (14 cos θ)2 is equal to          [2024]

  • 20

     

  • 25

     

  • 50

     

  • 40

     

(2)

a+b=4i^+(λ1)j^k^ and ab=2i^+(λ+1)j^5k^

Now, given that a+b and ab are mutually perpendicular.

 (a+b)·(ab)=0

 8+λ21+5=0  λ=±2

  λ=2            (  λ>0)

Now, cosθa·b|a|·|b|=(i^+2j^3k^)·(3i^j^+2k^)(1)2+(2)2+(3)2(3)2+(1)2+(2)2

 cos θ=514

  (14cosθ)2=(14×514)2=25.



Q 3 :    

Let P(x, y, z) be a point in the first octant, whose projection in the xy-plane is the point Q. Let OP = γ; the angle between OQ and the positive x-axis be θ; and the angle between OP and the positive z-axis be ϕ, where O is the origin. Then the distance of P from the x-axis is          [2024]

  • γ1sin2θcos2ϕ

     

  • γ1sin2ϕcos2θ

     

  • γ1+cos2θsin2ϕ

     

  • γ1+cos2ϕsin2θ

     

(2)

Projection of P in xy-plane is given by Q(x, y, 0)

Now, OPγ

 x2+y2+z2=γ  x2+y2+z2=γ2          ... (i)

Now, angle between OQ and positive x-axis is θ.

  (xi^+yj^)·(i^)x2+y2 =cosθ  cosθ=xx2+y2          ... (ii)

Similarly, angle between OP and positive z-axis is ϕ.

 cosϕ=zx2+y2+z2  sin2ϕ=x2+y2x2+y2+z2          ... (iii)

Now, distance of P from x-axis  =y2+z2

=γ2x2          [Using (i)]

=γ2cos2θ(x2+y2)         [Using (ii)]

=γ2cos2θsin2ϕ·γ2          [Using (iii)]

=γ1cos2θsin2ϕ.



Q 4 :    

Let a=i^+2j^+3k^, b=2i^+3j^5k^ and c=3i^j^+λk^ be three vectors. Let r be a unit vector along b+c. If r·a=3, then 3λ is equal to :         [2024]

  • 21

     

  • 30

     

  • 25

     

  • 27

     

(3)

We have, a=i^+2j^+3k^b=2i^+3j^5k^ and c=3i^j^+λk^

Now, b+c=5i^+2j^+(λ5)k^

r is a unit vector along b+c  r=b+c|b+c|

   r=5i^+2j^+(λ5)k^25+4+(λ5)2

Now, r·a=3

      129+(λ5)2[5+4+3(λ5)]=3

  129+(λ5)2[9+3(λ5)]2=9

  [3+(λ5)]2=29+(λ5)2

  9+(λ5)2+6(λ5)=29+(λ5)2

  9+6(λ5)=29  λ=253

Hence, 3λ=3×253=25.



Q 5 :    

Consider a ABC where A(1, 3, 2), B(–2, 8, 0) and C(3, 6, 7). If the angle bisector of BAC meets the line BC at D, then the length of the projection of the vector AD on the vector AC IS :          [2024]

  • 37238

     

  • 19

     

  • 39238

     

  • 382

     

(1)

We have, AB=32+52+22=38

AC=22+32+52=38

  BDDC=ABAC=1:1

i.e., D is the mid point of BC.

So. coordinates of D=(12,7,72)

Now, AD=12i^+4j^+32k^ and AC=2i^+3j^+5k^

  Projection of AD on AC=AD·AC|AC|

   =1+12+15/24+9+25=37238.



Q 6 :    

Let a unit vector u^=xi^+yj^+zk^ make angles π2,π3 and 2π3 with the vectors 12i^+12k^, 12j^+12k^ and 12i^+12j^ respectively. If v=12i^+12j^+12k^, then |u^v|2 is equal to          [2024]

  • 9

     

  • 112

     

  • 7

     

  • 52

     

(4)

Let a=12i^+12k^b=12j^+12k^ and c=12i^+12j^

Now, u^·a=|u^|·|a|cosθ,

 x2+z2=1·1·cosπ2  x+z=0          ... (i)

Again u^·b=y2+z2=1·1·cosπ3  y+z=12          ... (ii)

and u^·c=x2+y2=1·1·cos2π3  x+y=12          ... (iii)

Solving (i), (ii) and (iii), we get

x=12, y=0, z=12       u^=12i^+12k^

So, |u^v|2=|2i^12j^|2=2+12=52.



Q 7 :    

The Least positive integral value of α, for which the angle between the vectors αi^2j^+2k^ and αi^+2αj^2k^ is acute, is __________.          [2024]



(5)

cosθ=a·b|a||b|

As θ is acute, so cosθ>0.

(αi^2j^+2k^)·(αi^+2αj^2k^)α2+(2)2+(2)2×α2+(2α)2+(2)2>0

 α24α4α2+8×5α2+4>0

 α24α4>0  α24α+444>0

 (α2)28>0 (α2)2>8

 α2>22  or  α2<22          (Neglect)

 α>2+22=4.83

Least positive integral value of α=5.