Q 21 :    

Three defective oranges are accidently mixed with seven good ones and on looking at them, it is not possible to differentiable between them. Two oranges are drawn at random from the lot. If x denote the number of defective oranges, then the variance of x is          [2025]

  • 1825

     

  • 1425

     

  • 2875

     

  • 2675

     

(3)

Given, x denote the number of defective oranges, out of two. So, the probability distribution is given below as:

xi x = 0 x = 1 x = 2
P(x=xi) C27C210=715 C17×C13C210=715 C23C210=115

 

Mean (μ)=i=02xipi=915=35

and σ2=i=02pixi2μ2=1115(35)2=2875



Q 22 :    

Let x1,x2,...,x10 be ten observations such that i=110(xi2)=30, i=110(xiβ)2=98, β>2, and their variance is 45. If μ and σ2 are respectively the mean and the variance of 2(x11)+4β,2(x21)+4β,...,2(x101)+4β, then βμσ2 is equal to :          [2025]

  • 100

     

  • 110

     

  • 120

     

  • 90

     

(1)

We have, i=110(xi2)=30  i=110xi2×10=30

 i=110xi=50

Now, variance =45  45=110xi2(xi10)2

 45=110xi225  xi2=258

Now, i=110(xiβ)2=98  i=110(xi22βxi+β2)=98

 2582β·50+10β2=98

 10β2100β+160=0

 (β8)(β2)=0  β=8          [ β>2]

Now, μ=110i=110[2(xi1)+4β]

                =110[2i=110xi20+40β]

                =110[2×5020+320]=40

σ2=22(45)=165

  βμσ2=8×40×56=100.



Q 23 :    

The variance of the numbers 8, 21, 34, 47, ..., 320 is __________.          [2025]



(8788)

Since given numbers are in A.P.

  8+(n1)13=320  13n=325  n=25

Number of terms = 25

Now, Mean =xin=8+21+...+32025=252(8+320)25=164

and variance (σ2)=xi2n-(mean)2

=82+212+...+320225(164)2=n=125(13n5)22526896

=n=125(169n2+25130n)2526896

=169×25×26×516+625130×25×2622526896

= 35684 –26896 = 8788.