Q 21 :

Three defective oranges are accidently mixed with seven good ones and on looking at them, it is not possible to differentiable between them. Two oranges are drawn at random from the lot. If x denote the number of defective oranges, then the variance of x is          [2025]

  • 1825

     

  • 1425

     

  • 2875

     

  • 2675

     

(3)

Given, x denote the number of defective oranges, out of two. So, the probability distribution is given below as:

xi x = 0 x = 1 x = 2
P(x=xi) C27C210=715 C17×C13C210=715 C23C210=115

 

Mean (μ)=i=02xipi=915=35

and σ2=i=02pixi2μ2=1115(35)2=2875



Q 22 :

Let x1,x2,...,x10 be ten observations such that i=110(xi2)=30, i=110(xiβ)2=98, β>2, and their variance is 45. If μ and σ2 are respectively the mean and the variance of 2(x11)+4β,2(x21)+4β,...,2(x101)+4β, then βμσ2 is equal to :          [2025]

  • 100

     

  • 110

     

  • 120

     

  • 90

     

(1)

We have, i=110(xi2)=30  i=110xi2×10=30

 i=110xi=50

Now, variance =45  45=110xi2(xi10)2

 45=110xi225  xi2=258

Now, i=110(xiβ)2=98  i=110(xi22βxi+β2)=98

 2582β·50+10β2=98

 10β2100β+160=0

 (β8)(β2)=0  β=8          [ β>2]

Now, μ=110i=110[2(xi1)+4β]

                =110[2i=110xi20+40β]

                =110[2×5020+320]=40

σ2=22(45)=165

  βμσ2=8×40×56=100.



Q 23 :

The variance of the numbers 8, 21, 34, 47, ..., 320 is __________.          [2025]



(8788)

Since given numbers are in A.P.

  8+(n1)13=320  13n=325  n=25

Number of terms = 25

Now, Mean =xin=8+21+...+32025=252(8+320)25=164

and variance (σ2)=xi2n-(mean)2

=82+212+...+320225(164)2=n=125(13n5)22526896

=n=125(169n2+25130n)2526896

=169×25×26×516+625130×25×2622526896

= 35684 –26896 = 8788.



Q 24 :

The mean and variance of a set of 15 numbers are 12 and 14 respectively. The mean and variance of another set of 15 numbers are 14 and σ2 respectively. If the variance of all the 30 numbers in the two sets is 13, then σ2 is equal to            [2023]

  • 10

     

  • 11

     

  • 12

     

  • 9

     

(1)

Combine variance

=n1σ12+n2σ22n1+n2+n1n2(m1-m2)2(n1+n2)2

13=15·14+15·σ230+15·15(12-14)230×30

13=14+σ22+44σ2=10



Q 25 :

Let the mean and variance of 12 observations be 92 and 4 respectively. Later on, it was observed that two observations were considered as 9 and 10 instead of 7 and 14 respectively. If the correct variance is mn?, where m and n are coprime, then m+n is equal to             [2023]

  • 314

     

  • 315 

     

  • 317

     

  • 316

     

(3)

Incorrect mean = 92

Incorrect xi=92×12=54

So, correct mean =54+7+14-9-1012=5612=143

And 4=Incorrect xi212-(92)2 Incorrect xi2=291

Now, correct (xi2)=291+72+142-92-102=355

So, correct variance =35512-(143)2=28136=mn

  m+n=281+36=317



Q 26 :

Let μ be the mean and σ be the standard deviation of the distribution

xi 0 1 2 3 4 5
fi k+2 2k k2-1 k2-1 k2+1 k-3

 

where fi=62. If [x] denotes the greatest integer x, then [μ2+σ2] is equal to                [2023]

  • 8

     

  • 6

     

  • 9

     

  • 7

     

(1)

We have, fi=62  

3k2+4k-2=623k2+16k-12k-64=0

k(3k+16)-4(3k+16)=0

k=4,-163 (not possible)

  k=4, σ2=fixi2fi-μ2

σ2=8×12+15×22+15×32+17×42+5262-μ2

σ2+μ2=50062[σ2+μ2]=8



Q 27 :

Let sets A and B have 5 elements each. Let the mean of the elements in sets A and B be 5 and 8 respectively and the variance of the elements in sets A and B be 12 and 20 respectively. A new set C of 10 elements is formed by subtracting 3 from each element of A and adding 2 to each element of B. Then the sum of the mean and variance of the elements of C is ______.           [2023]

  • 32  

     

  • 38          

     

  • 40

     

  • 36

     

(2)

A={a1,a2,a3,a4,a5},  B={b1,b2,b3,b4,b5}
  
Given, i=15ai=25,  i=15bi=40

i=15ai25-(i=15ai5)2=12,  i=15bi25-(i=15bi5)2=20

i=15ai2=185,    i=15bi2=420

Now, C={C1,C2,,C10}

Such that  Ci={ai-3,i=1,2,3,4,5bi+2,i=6,7,8,9,10

  Mean of C, C¯=(ai-15)+(bi+10)10=10+5010=6

  σ2= i=110Ci210-(C¯)2=(ai-3)2+(bi+2)210-62

     = ai2+bi2-6ai+4bi+6510-36=32

   Mean+Variance=C¯+σ2=6+32=38



Q 28 :

Let the mean of 6 observations 1, 2, 4, 5, x and y be 5 and their variance be 10. Then their mean deviation about the mean is equal to           [2023]

  • 73

     

  • 83

     

  • 103

     

  • 3

     

(2)

Mean (x¯)=1+2+4+5+x+y6=5 

x+y=18    (i) 

Variance=10

12+22+42+52+x2+y26-25=10 

x2+y2=164    (ii)

Solving (i) and (ii), we get: 

       x=10,  y=8 

Now, M.D(x¯)=|xi-x¯|6=4+3+1+0+5+36=166=83



Q 29 :

The mean and standard deviation of 10 observations are 20 and 8 respectively. Later on, it was observed that one observation was recorded as 50 instead of 40. Then the correct variance is               [2023]

  • 11

     

  • 12

     

  • 14

     

  • 13

     

(4)

 



Q 30 :

The mean and variance of 5 observations are 5 and 8 respectively. If 3 observations are 1, 3, 5, then the sum of cubes of the remaining two observations is        [2023]

  • 1216

     

  • 1456

     

  • 1072

     

  • 1792

     

(3)

Let the missing observations be x and y.

  Mean=1+3+5+x+y5

5=9+x+y5x+y=16                     ...(i)

and variance =x2+y2+355-258=x2+y2+35-1255

  x2+y2=40+90=130                                      ..(ii)

Consider (x+y)2=x2+y2+2xy

256=130+2xy2xy=126

Now, consider (x-y)2

 x2+y2-2xy=130-126(x-y)2=4

 x-y=2         ...(iii)            or           x-y=-2             ...(iv)

Using (i) and (iii), we have x=9 and y=7

Using (i) and (iv), we have x=7 and y=9

 Sum of cubes of x and y=73+93=343+729=1072