Q 41 :    

Let M be the maximum value of the product of two positive integers when their sum is 66. Let the sample space S={xZ:x(66-x)59M} and the event A={xS:x is a multiple of 3}. Then P(A) is equal to             [2023]

  • 1544

     

  • 13

     

  • 722

     

  • 15

     

(2)

M=332  (Using A.M. and G.M. inequality)

        x(66-x)59×332

  x2-66x+59×3320 x2-66x+6050                      ...(i)

(x-55)(x-11)0;  11x55

   S={11,12,13,,55}n(S)=45

Elements of S which are multiples of 3 are

12+(n-1)3=543(n-1)=42n=15

n(A)=15P(A)=1545=13



Q 42 :    

Let N be the sum of the numbers appeared when two fair dice are rolled and let the probability that N-2, 3N, N+2 are in geometric progression be k48. Then the value of k is         [2023]

  • 16

     

  • 2

     

  • 8

     

  • 4

     

(4)

Here, n(S)=36

N denotes the sum of numbers when two fair dice are rolled.

N-2, 3N, N+2 are in G.P.

3N=(N-2)(N+2)

  3N=N2-4N2-3N-4=0

  (N-4)(N+1)=0

  N=4             (since N=-1 rejected)

Favorable cases: (1,3), (3,1), (2,2)

Required probability=336=k48 (given)k=4



Q 43 :    

Let S={w1,w2,} be the sample space associated to a random experiment. Let P(wn)=P(wn-1)2,n2. Let A={2k+3l:k,l} and B={wn:nA}. Then P(B) is equal to                 [2023]

  • 116

     

  • 364

     

  • 332

     

  • 132

     

(2)

Given S={w1,w2,} be the sample space associated to a random experiment. If  

P(Wn)=P(Wn-1)2,n2

and let A={2k+3l:k,lN} and B={wn:nA}.

First of all, let P(w1)=λ. Then P(w2)=λ2

P(wn)=λ2n-1

As 
k=1P(wk)=1λ1-12=1λ=12

So P(Wn)=12n

A={2k+3l:k,lN}={5,7,8,9,10,}

B={wn:nA}

B={w5,w7,w8,w9,w10,w11,}

A=N-{1,2,3,4,6}

P(B)=1-[P(w1)+P(w2)+P(w3)+P(w4)+P(w6)]

=1-[12+14+18+116+164]=1-32+16+8+4+164=364



Q 44 :    

A bag contains 6 balls. Two balls are drawn from it at random and both are found to be black. The probability that the bag contains at least 5 black balls is       [2023]

  • 27

     

  • 37

     

  • 57

     

  • 56

     

(3)

Total possibilities :

Case I : 2B + 4 others

Case II : 3B + 3 others

Case III : 4B + 2 others

Case IV : 5B + 1 other

Case V : 6B + 0 other

Required probability=C25C26+C26C26C22C26+C23C26+C24C26+C25C26+C26C26

=10+151+3+6+10+15=2535=57



Q 45 :    

Let the probability of getting head for a biased coin be 14. It is tossed repeatedly until a head appears. Let N be the number of tosses required. If the probability that the equation 64x2+5Nx+1=0 has no real root is pq, where p and q are co-prime, then q-p is equal to ______.          [2023]



(27)

Let H be the event of getting head and T be the event of getting tail. P(H)=14 and P(T)=34

Now, 64x2+5Nx+1=0

D=25N2-4(64)(1)=25N2-256

For no real roots, D<0

25N2-256<0

25N2<256N2<25625N<165

  N=1,2,3

Required probability =H+TH+TTH

=14+34×14+34×34×14 

=14+316+964=3764=pq  (Given)

  q-p=64-37=27



Q 46 :    

Three urns A, B and C contain 4 red, 6 black; 5 red, 5 black; and λ red, 4 black balls respectively. One of the urns is selected at random and a ball is drawn. If the ball drawn is red and the probability that it is drawn from urn C is 0.4, then the square of the length of the side of the largest equilateral triangle, inscribed in the parabola y2=λx with one vertex at the vertex of the parabola, is __________.            [2023]



(432)

P(Red ball from urn C)

=13·λλ+413·410+13·510+13·λλ+4=0.4λλ+4410+510+λλ+4=410

 λ=6

So, parabola y2=6x

Let side length of the triangle be l.

tan30°=3t32t2

13=2t

  t=23

So, (32t2,3t)=(18,63)

Now, l2=182+(63)2=324+108=432



Q 47 :    

25% of the population are smokers. A smoker has 27 times more chances to develop lung cancer than a non-smoker. A person is diagnosed with lung cancer and the probability that this person is a smoker is k10. Then the value of k is _______.             [2023]



(9)

Let number of smokers be E1. So, P(E1)=14.

The number of non-smokers be E2. So, P(E2)=34.

Let E denote persons diagnosed with lung cancer.

Let P(E/E2)=x, P(E/E1)=27x

Now, P(E1/E)=P(E1)P(E/E1)P(E)

=14×27×x14×27×x+34×x=2730=910

So, k=9



Q 48 :    

A bag contains six balls of different colours. Two balls are drawn in succession with replacement. The probability that both the balls are of the same colour is p. Next four balls are drawn in succession with replacement and the probability that exactly three balls are of the same colour is q. If p:q=m:n,where m and n are coprime, then m+n is equal to _______.            [2023]



(14)

Bag contains six balls of different colours.

Probability of drawing a ball of one colour =16

 Probability of drawing two balls of same colour with replacement=p=(16)2

Probability that exactly three balls are of same colour when four balls are drawn in succession with replacement.

=q=4(16)3×56=2064

p:q=162:2064=3620=95

p:q=m:n=9:5   m=9, n=5

Now, m+n=9+5=14



Q 49 :    

Let A be the event that the absolute difference between two randomly chosen real numbers in the sample space [0, 60] is less than or equal to a.If P(A)=1136, then a is equal to ______ .            [2023]



(10)

|x-y|a 

 -ax-ya  x-ya  and  x-y-a

P(A)=ar(OACDEG)ar(OBDF)=ar(OBDF)-ar(ABC)-ar(EFG)ar(OBDF)

 1136=602-12(60-a)2-12(60-a)23600

 1100=3600-(60-a)2

 (60-a)2=2500  60-a=50  a=10