Q 81 :

Let [x] denote the greatest integer x. Consider the function f(x)=max{x2,1+[x]}. Then the value of the integral 02f(x)dx is            [2023]

  • 5+423

     

  • 8+423

     

  • 1+523

     

  • 4+523

     

(1)

Given f(x)=max{x2,1+[x]}

So, 02f(x)dx=011dx+122dx+22x2dx

               =1+2(2-1)+8-223=5+423



Q 82 :

Let f(x)=x+aπ2-4sinx+bπ2-4cosx, x be a function which satisfies f(x)=x+0π/2sin(x+y)f(y)dy. Then (a+b) is equal to        [2023]

  • -π(π+2)

     

  • -π(π-2)

     

  • -2π(π+2)

     

  • -2π(π-2)

     

(3)

f(x)=x+0π/2(sinxcosy+cosxsiny)f(y)dy

=x+0π/2((cosyf(y)dy)sinx+(sinyf(y)dy)cosx)                 ...(i)

On comparing with f(x)=x+aπ2-4sinx+bπ2-4cosx

aπ2-4=0π/2cosyf(y)dy                            ...(ii)

bπ2-4=0π/2sinyf(y)dy                               ...(iii)

Adding (ii) and (iii), we get

a+bπ2-4=0π/2(siny+cosy)f(y)dy                  ...(iv)

a+bπ2-4=0π/2(siny+cosy)f(π2-y)dy          ...(v)

Adding (iv) and (v), we get

2(a+b)π2-4=0π/2(siny+cosy)[π2+(a+b)π2-4(siny+cosy)]dy

=π+a+bπ2-4(π2+1) (a+b)=-2π(π+2)



Q 83 :

The value of the integral 1/22tan-1xxdx is equal to               [2023]

  • 12loge2

     

  • πloge2

     

  • π4loge2

     

  • π2loge2

     

(4)

We have the integral as follows  

I=1/22tan-1xxdx  (1)

By substituting x=1t and dx=-1t2dt in equation (1),

I=-21/2tan-11t1t·1t2·dt

I=-21/2tan-11ttdt=1/22cot-1ttdt=1/22cot-1xxdx  (2)

On adding equation (1) and (2), we have  

2I=1/22tan-1x+cot-1xxdx;   2I=π21/22dxx=π2[logx]1/22

      2I=π2[loge2-loge12]=πloge2

 2I=πloge2      I=π2loge2

Hence, option (4) is the correct answer.



Q 84 :

The value of the integral 12(t4+1t6+1)dt is                 [2023]

  • tan-12-13tan-18+π3

     

  • tan-12+13tan-18-π3

     

  • tan-112+13tan-18-π3

     

  • tan-112-13tan-18+π3

     

(2)

Let I=12[t4+1t6+1]dt

=121t2+1dt+13123t2(t3)2+1dt

=[tan-1t]12+[13(tan-1t3)]12

=tan-12+13tan-18-π3



Q 85 :

If [t] denotes the greatest integer t, then the value of 3(e-1)e12x2e[x]+[x3]dx is             [2023]

  • e8-1  

     

  • e7-1  

     

  • e9-e  

     

  • e8-e

     

(4)

Let I=3(e-1)e12x2e[x]+[x3]dx

Between 1 and 2, [x] = 1, so e[x]=e.

   I=3(e-1)12x2·e[x3]dx

Let x3=tx2dx=dt3

I=3(e-1)318e[t]dt=(e-1)18e[t]dt

=(e-1)[e+e2+e3+e4+e5+e6+e7]=(e-1)[e(e7-1)e-1]

e(e7-1)=e8-e



Q 86 :

limn3n{4+(2+1n)2+(2+2n)2++(3-1n)2} is equal to            [2023]

  • 193  

     

  • 12

     

  • 0

     

  • 19

     

(4)

We have, limn3n{4+(2+1n)2+(2+2n)2++(3-1n)2}

=limn3n{(2+0n)2+(2+1n)2++(2+(n-1n))2}

=limn3nr=0n-1(2+rn)2=301(2+x)2dx

Let 2+x=tdx=dt323t2dt=3×[t32]23=33[27-8]=19



Q 87 :

Let α(0,1) and β=loge(1-α).  Let Pn(x)=x+x22+x33++xnn,x(0,1). Then the integral 0αt501-tdt is equal to            [2023]

  • P50(α)-β  

     

  • -(β+P50(α))  

     

  • β+P50(α)  

     

  • β-P50(α)

     

(2)

We have, Pn(x)=x+x22+x33++xnn, x(0,1)                       ...(i)

Let I=0αt501-tdt=0αt50+1-11-tdt=0α(-(1-t50)1-t+11-t)dt

=0α-(1+t+t2++t49)dt+0α11-tdt

=-[t+t22+t33++t5050]0α-[log(1-t)]0α

=-log(1-α)-[α+α22+α33++α5050]

=-β-P50(α)                     [ β=loge(1-α) and from (i)]

=-(β+P50(α))



Q 88 :

The value of π/3π/2(2+3sinx)sinx(1+cosx)dx is equal to             [2023]

  • 72-3-loge3  

     

  • 103-3-loge3  

     

  • 103-3+loge3  

     

  • -2+33+loge3

     

(3)

Let I=π/3π/22+3sinxsinx(1+cosx)dx

=π/3π/22(1-cosx)sinx(1-cos2x)dx+π/3π/23(1+cosx)dx

=π/3π/22sin3xdx-π/3π/22cosxsin3xdx+32π/3π/21cos2x2dx

=2π/3π/2cosec2xcosec2xdx-2π/3π/2cotx·cosec2xdx+32[2tanx2]π/3π/2

=2π/3π/21+cot2xcosec2dx-2π/3π/2cotx·cosec2dx+3[tanπ4-tanπ6]

Let cotx=tcosec2xdx=-dt and  

For x=π2; t=0 and for x=π3; t=13

   I=-21/301+t2dt+21/30tdt+3[1-13]

=-2[t21+t2+12loge(t+1+t2)]1/30 +[t2]1/30+(3-3)

=23+log3-13+3-3=103-3+loge3



Q 89 :

If ϕ(x)=1xπ/4x(42sint-3ϕ'(t))dt,x>0, then ϕ'(π4) is equal to            [2023]

  • 46+π  

     

  • 86+π  

     

  • 8π  

     

  • 46-π

     

(2)

By Leibnitz rule,

ϕ'(x)=1x[(42sinx-3ϕ'(x))·1-0]-12x-3/2π/4x(42sint-3ϕ'(t))dt

Put x=π4, we get ϕ'(π4)=2π[4-3ϕ'(π4)]+0

(1+6π)ϕ'(π4)=8π=8π×(π6+π)=86+π



Q 90 :

Let α>0. If 0αxx+α-xdx=16+20215, then α is equal to              [2023]

  • 2  

     

  • 22  

     

  • 4  

     

  • 2

     

(1)

After rationalising, I=0αxα(x+α+x)dx

=0α1α[(x+α)3/2-α(x+α)1/2+x3/2]dx

=1α[25(x+α)5/2-α23(x+α)3/2+25x5/2]0α

=1α(25(2α)5/2-2α3(2α)3/2+25α5/2-25α5/2+23α5/2)

=1α(27/2α5/25-25/2α5/23+23α5/2)=α3/2(27/25-25/23+23)

=α3/215(242-202+10)=α3/215(42+10)

Now, α3/215(42+10)=16+20215=22(42+10)15

α3/2=22=23/2α=2