Q 71 :

If f: be a continuous function satisfying 0π/2f(sin2x)sinxdx+α0π/4f(cos2x)cosxdx=0, then the value of α is          [2023]

  • -2

     

  • 3

     

  • -3

     

  • 2

     

(1)

I=0π/4f(sin2x)sinxdx+π/4π/2f(sin2x)sinxdx+α0π/4f(cos2x)cosxdx=0 

Apply 0af(x)dx=0af(a-x)dx in the first part and put  x-π4=t in the second part, we get

I=0π/4f(cos2x)sin(π4-x)dx+0π/4f(cos2t)sin(π4+t)dt+α0π/4f(cos2x)cosxdx=0

=0π/4f(cos2x)[2sinπ4·cosx+αcosx]dx=0 

(α+2)0π/4f(cos2x)cosxdx=0    α=-2

[ In (0,π4), f(cos(2x)) and cosx are not zero.]



Q 72 :

Let the function f:[0,2] be defined as f(x)={emin{x2,x-[x]},x[0,1)e[x-logex],x[1,2) where [t] denotes the greatest integer less than or equal to t. Then the value of the integral 02xf(x)dx is                  [2023]

  • (e-1)(e2+12)  

     

  • 2e-12

     

  • 1+3e2

     

  • 2e-1

     

(2)

f(x)={emin{x2,x-[x]},x[0,1)e[x-logex],x[1,2)

For x[0,1);  min{x2,{x}}=x2 

and for x[1,2); [x-logex]=1 

 f(x)={ex2,x[0,1)e,x[1,2)

Now, 02xf(x)=01xex2dx+12xedx 

=12(e-1)+12(4-1)e=2e-12



Q 73 :

06e3x+6e2x+11ex+6dx=                  [2023]

  • loge(6427)  

     

  • loge(51281)

     

  • loge(25681)

     

  • loge(3227)

     

(4)

Put ex=texdx=dt and on solving, we get loge(3227)

 



Q 74 :

The value of e-π4+0π4e-xtan50xdx0π4e-x(tan49x+tan51x)dx is:            [2023]

  • 51

     

  • 49

     

  • 25

     

  • 50

     

(4)

e-π/4+0π/4e-xtan50xdx0π/4e-x(tan49x+tan51x)dx

First, simplify, 0π/4e-xtan50xdx

=[-e-x(tanx)50]0π/4+0π/4e-x(50)tan49x·sec2xdx

=-e-π/4+0+500π/4e-x(tanx)49(1+tan2x)dx

=-e-π/4+500π/4e-x[(tanx)51+(tanx)49]dx

Now, -e-π/4+0π/4e-x(tanx)50dx0π/4e-x(tan49x+tan51x)dx

=500π/4e-x(tan51x+tan49x)dx0π/4e-x(tan49x+tan51x)dx=50

  e-π/4+0π/4e-xtan50xdx0π/4e-x(tan49x+tan51x)dx=50



Q 75 :

If 011(5+2x-2x2)(1+e(2-4x))dx=1αloge(α+1β), α,β>0, then α4-β4 is equal to           [2023]

  • - 21

     

  • 0

     

  • 21

     

  • 19

     

(3)

Let I=011(5+2x-2x2)(1+e(2-4x))dx

I=011(5+2x(1-x))·e4x(e4x+e2)dx                  ...(i)

We know that, abf(x)dx=abf(b+a-x)dx

   I=0115+2(1-x)·x·e4(1-x)e4(1-x)+e2dx            ...(ii)

Adding (i) and (ii), we get

2I=0115+2(1-x)·x[e4xe4(1-x)+e4xe2+e4xe4(1-x)+e4(1-x)·e2(e4(1-x)+e2)(e4x+e2)]dx

2I=01dx5+2(1-x)·x=01dx112-2(x-12)2

=01dx(114-(x-12)2)

I=111 ln(11+110)

  α=11 and β=10  α4-β4=121-100=21



Q 76 :

limn[11+n+12+n+13+n++12n] is equal to           [2023]

  • loge2  

     

  • loge(23)  

     

  • 0

     

  • loge(32)

     

(1)

limn[11+n+12+n+13+n++12n]

=limnr=1n1r+n=limn1nr=1n11+rn=01dx1+x=ln[1+x]|01=ln2



Q 77 :

The value of the integral -π4π4x+π42-cos2xdx is                 [2023]

  • π2123

     

  • π26  

     

  • π233  

     

  • π263

     

(4)

I=-π4π4x+π42-cos2xdx  ...(i)

Replace x by -x, we get

I=-π4π4-x+π42-cos2xdx  ...(ii)

Adding (i) and (ii), we get

2I=-π4π4π/22-cos2xdx I=π4·20π4dx2-cos2xdx

I=π4·20π4 (1+tan2x)dx2(1+tan2x)-(1-tan2x)

=π20π4 sec2xdx2(1+tan2x)-(1-tan2x)

Let tanx=tsec2xdx=dt

at x=0,t=0 and x=π4,t=1

I=π201dt3t2+1 I=π601dtt2+(13)2=π63·[tan-13t]01

I=π23tan-13    I=π263



Q 78 :

324334489-4x2dx is equal to               [2023]

  • 2π

     

  • π6

     

  • π3

     

  • π2

     

(1)

 



Q 79 :

The minimum value of the function f(x)=02e|x-t|dt is                [2023]

  • 2

     

  • 2(e - 1)

     

  • 2e - 1

     

  • e(e - 1)

     

(2)

Case 1: When x<0

f(x)=02et-xdt=e-x(et)02=e-x(e2-1)

Case 2: When 0<x<2

f(x)=0xex-tdt+x2et-xdt f(x)=ex(-e-t)0x+e-x(et)x2

=-ex(e-x-1)+e-x(e2-ex)=-1+ex+e2e-x-1=ex+e-xe2-2

Case 3: When x2

f(x)=02e(x-t)dt=ex(-e-t)02=-ex(e-2-1)

Hence,

f(x)={e-x(e2-1),x<0 ex+e-xe2-2,0x<2(1-e-2)ex,x2

f(x) is decreasing for x<0 and increasing for x2.  

f(x) is also continuous.

For 0x2, f(x) is minimum at x=1.  

(Using A.M.–G.M. inequality)

Hence, the minimum value f(x)=f(1)=2(e-1)



Q 80 :

The integral 1612dxx3(x2+2)2 is equal to                [2023]

  • 116-loge4

     

  • 1112+loge4

     

  • 116+loge4

     

  • 1112-loge4

     

(1)

Let I=1612dxx3(x2+2)2=16121x7(1+2x2)2dx

Let 1+2x2=p  -4x3dx=dp  dxx3=-14dp

I=-433/2dp4(p-1)2·p2

=-433/2(p-1)2dp4p2=-33/2p2+1-2pp2dp

=-33/2(1+1p2-2p)dp=-[p-1p-2logp]33/2

=-[{56-2loge(32)}-{83-2loge3}]

=-[2loge2-116]=116-loge22=116-loge4