Let f(x)=∫2x(x2+1)(x2+3)dx. If f(3)=12(loge5-loge6), then f(4) is equal to [2023]
loge17-loge18
loge19-loge20
12(loge19-loge17)
12(loge17-loge19)
(4)
Let x2=t, 2x dx=dx
f(x)=∫dt(t+1)(t+3)=12∫(1t+1-1t+3)dt
f(x)=12loge(t+1t+3)+c=12loge(x2+1x2+3)+c
f(3)=12loge(1012)+c =12loge56+c=12(loge5-loge6)⇒c=0
f(x)=12loge(x2+1x2+3); f(4)=12loge(1719)=12(loge17-loge19)
Let I(x)=∫x+7xdx and I(9)=12+7loge7. If I(1)=α+7loge(1+22) then α4 is equal to _______ . [2023]
(64)
We have, I(x)=∫x+7xdx
Put x=t2⇒dx=2t dt
So, ∫2t2+7dt=2∫t2+(7)2dt
=2[t2t2+7+72ln|t+t2+7|]+C
⇒ I(x)=xx+7+7ln|x+x+7|+C
We have, I(9)=12+7ln7=12+7[ln(3+4)]
⇒C=0
So, I(x)=xx+7+7ln|x+x+7|
I(1)=8+7ln|1+8|
∴ I(1)=8+7ln|1+22|⇒α=8
∴ α4=[(8)1/2]4=82⇒α4=64
Let f(x)=∫dx(3+4x2)4-3x2,|x|<23. If f(0)=0 and f(1)=1αβtan-1(αβ), α,β>0, then α2+β2 is equal to _______ . [2023]
(28)
Given, f(x)=∫dx(3+4x2)4-3x2
x=1t⇒dx=-1t2dt
⇒f(x)=∫-1t2dt(3t2+4)t24t2-3t
=-∫-t dt(3t2+4)4t2-3 Put 4t2-3=z2⇒t dt=z4 dz
=-14∫z dz(3(z2+34)+4)z=∫-dz3z2+25=-13∫dzz2+(53)2
=∫-1335tan-1(3z5)+C=-153tan-1(354t2-3)+C
f(x)=-153tan-1(354-3x2x2)+C
∵ f(0)=0 ∴ C=π103
Now, f(1)=-153tan-1(35)+π103
⇒f(1)=153cot-1(35)=153tan-153
So, α=5:β=3 ∴ α2+β2=28
If ∫sec2x-1 dx=αloge|cos2x+β+cos2x(1+cos1βx)|+constant, then β-α is equal to _________ . [2023]
(1)
Let I=∫(sec2x-1) dx=∫1-cos2xcos2xdx
=∫2sin2x2cos2x-1dx=2∫sinx2cos2x-1dx
Substitute cosx=t⇒-sinx dx=dt
I=-2∫dt2t2-1=-ln|2t+2t2-1|
=-ln|2cosx+2cos2x-1|
=-ln|2cosx+cos2x|
=-12ln|2cos2x+cos2x+2cos2x·2cosx|+C
=-12ln(2cos2x+1+2cos2x1+cos2x)
=-12ln(cos2x+12+cos2x1+cos2x)
=-12ln|cos2x+12+cos2x·1+cos2x|+C
⇒ -12ln|cosx+12+cos2x(1+cos2x)|+C
=αln|cos2x+β|+cos2x(1+cos1β)+c
On comparing, we get, α=-12, β=12 ∴ β-α=12+12=1