Q 21 :    

Let f(x)=2x(x2+1)(x2+3)dx. If f(3)=12(loge5-loge6), then f(4) is equal to             [2023]

  • loge17-loge18

     

  • loge19-loge20

     

  • 12(loge19-loge17)

     

  • 12(loge17-loge19)

     

(4)

Let x2=t, 2xdx=dx

f(x)=dt(t+1)(t+3)=12(1t+1-1t+3)dt 

f(x)=12loge(t+1t+3)+c=12loge(x2+1x2+3)+c

f(3)=12loge(1012)+c =12loge56+c=12(loge5-loge6)c=0

f(x)=12loge(x2+1x2+3); f(4)=12loge(1719)=12(loge17-loge19)



Q 22 :    

Let I(x)=x+7xdx and I(9)=12+7loge7. If I(1)=α+7loge(1+22) then α4 is equal to _______ .           [2023]



(64)

We have, I(x)=x+7xdx 

Put x=t2dx=2tdt 

So, 2t2+7dt=2t2+(7)2dt

=2[t2t2+7+72ln|t+t2+7|]+C

  I(x)=xx+7+7ln|x+x+7|+C

We have, I(9)=12+7ln7=12+7[ln(3+4)] 

C=0

So, I(x)=xx+7+7ln|x+x+7|

I(1)=8+7ln|1+8|

  I(1)=8+7ln|1+22|α=8

  α4=[(8)1/2]4=82α4=64



Q 23 :    

Let f(x)=dx(3+4x2)4-3x2,|x|<23. If f(0)=0 and f(1)=1αβtan-1(αβ), α,β>0, then α2+β2 is equal to _______ .        [2023]



(28)

Given, f(x)=dx(3+4x2)4-3x2 

x=1tdx=-1t2dt

f(x)=-1t2dt(3t2+4)t24t2-3t 

=--tdt(3t2+4)4t2-3  Put 4t2-3=z2tdt=z4dz

=-14zdz(3(z2+34)+4)z=-dz3z2+25=-13dzz2+(53)2

=-1335tan-1(3z5)+C=-153tan-1(354t2-3)+C

f(x)=-153tan-1(354-3x2x2)+C

 f(0)=0        C=π103

Now, f(1)=-153tan-1(35)+π103

f(1)=153cot-1(35)=153tan-153

So, α=5:β=3     α2+β2=28



Q 24 :    

If sec2x-1dx=αloge|cos2x+β+cos2x(1+cos1βx)|+constant, then β-α is equal to _________ .              [2023]



(1)

Let I=(sec2x-1)dx=1-cos2xcos2xdx 

=2sin2x2cos2x-1dx=2sinx2cos2x-1dx

Substitute cosx=t-sinxdx=dt 

I=-2dt2t2-1=-ln|2t+2t2-1|

=-ln|2cosx+2cos2x-1|

=-ln|2cosx+cos2x|

=-12ln|2cos2x+cos2x+2cos2x·2cosx|+C

=-12ln(2cos2x+1+2cos2x1+cos2x) 

=-12ln(cos2x+12+cos2x1+cos2x)

=-12ln|cos2x+12+cos2x·1+cos2x|+C 

  -12ln|cosx+12+cos2x(1+cos2x)|+C

=αln|cos2x+β|+cos2x(1+cos1β)+c

On comparing, we get, α=-12,  β=12    β-α=12+12=1