Let α=8-14i, A={z∈ℂ: αz-α¯z¯z2-(z¯)2-112i=1} and B={z∈ℂ:|z+3i|=4}. Then ∑z∈A∩B(Rez-Imz) is equal to ________. [2023]
(14)
Given, α=8-14i
Let z=x+iy
αz=(8-14i)(x+iy)=(8x+14y)+i(-14x+8y)
Now, z+z¯=2x and z-z¯=2iy
For A, 2i(-14x+8y)i(4xy-112)=1
⇒(x-4)(y+7)=0⇒x=4 or y=-7
For B, x2+(y+3)2=16
When x=4, then y=-3; when y=-7, then x=0
∴A∩B={4-3i, 0-7i}
So, ∑z∈A∩B(Rez-Imz)=4-(-3)+(0-(-7))=7+7=14